Home
Class 12
MATHS
Let vecu=2hati-hatj+hatk, vecv=-3hatj+2h...

Let `vecu=2hati-hatj+hatk, vecv=-3hatj+2hatk` be vectors and `vecw` be a unit vector in the xy-plane. Then the maximum possible value of `|(vecu xx vecv)|.|vecw|` is

A

`sqrt(5)`

B

`sqrt(12)`

C

`sqrt(13)`

D

`sqrt(17)`

Text Solution

Verified by Experts

The correct Answer is:
D

`vecu xx vecv = (2hati-hatj+hatk) xx (-3hatj+2hatk)`
`=hati-4hatj-6hatk`
Let `vecw = ahati+bhatj`
We have `a^(2)+b^(2)=1`
So let `a=costheta,b=sintheta`
Now, `vecu xx vecv. vecw=a-4b=costheta-4sintheta`
Max. value `=sqrt(1^(2)+(-4)^(2))=sqrt(17)`
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE|Exercise JEE Main Previous Year|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos

Similar Questions

Explore conceptually related problems

A vector vecd is equally inclined to three vectors veca=hati-hatj+hatk,vecb=2hati+hatj and vecc=3hatj-2hatk. Let vecx,vecy and vecz be three vectors in the plane of veca,vecb;vecb,vec;vecc,veca, respectively. Then

A vector vecd is equally inclined to three vectors veca=hati-hatj+hatk,vecb=2hati+hatj and vecc=3hatj-2hatk. Let vecx,vecy and vecz be three vectors in the plane of veca,vecb;vecb,vec;vecc,veca, respectively. Then

Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj - hatk be three vectors. A vectors vecv in the plane of veca and vecb , whose projection on vecc is 1/sqrt3 is given by

For given vectors veca=2hati-hatj+2hatkandvecb=-hati+hatj-hatk , find the unit vector in the direction of the vector veca+vecb .

Let veca=2hati=hatj+hatk, vecb=hati+2hatj-hatk and vecc=hati+hatj-2hatk be three vectors . A vector in the pland of vecb and vecc whose projection on veca is of magnitude sqrt((2/3)) is (A) 2hati+3hatj+3hatk (B) 2hati+3hatj-3hatk (C) -2hati-hatj+5hatk (D) 2hati+hatj+5hatk

If veca = (-hati + hatj - hatk) and vecb = (2hati- 2hatj + 2hatk) then find the unit vector in the direction of (veca + vecb) .

veca=2hati+hatj+2hatk, vecb=hati-hatj+hatk and non zero vector vecc are such that (veca xx vecb) xx vecc = veca xx (vecb xx vecc) . Then vector vecc may be given as

If veca=2hati+hatj-hatk, vecb= -hati+2hatj+hatk, vecc=-hati+2hatj-hatk then the unit vector perpendicular to both veca+vecb and vecb +vec c is :

If veca=hati+hatj+hatk,vecb=2hati-hatj+3hatkandvecc=hati-2hatj+hatk , find a unit vector parallel to the vector 2veca-vecb+3vecc .