Home
Class 12
MATHS
If veca, vecb, vecc are unit vectors suc...

If `veca, vecb, vecc` are unit vectors such that `veca. vecb=0, (veca-vecc).(vecb+vecc)=0` and `vecc=lambdaveca+muvecb+omega(veca xx vecb)`, where `lambda, mu, omega` are scalars, then

A

`mu^(2)+omega^(2)=1`

B

`lambda+mu=1`

C

`(mu+1)^(2)+mu^(2)+omega^(2)=1`

D

`lambda^(2)+mu^(2)=1`

Text Solution

Verified by Experts

The correct Answer is:
C

`(veca-vecc).(vecb+vecc)=0`
`rArr veca.vecb+vecc(veca-vecb)-|vecc|^(2)=0`
`rArr (veca-vecb).vecc=1`
`rArr (veca-vecb).(lambdaveca+muvecb+omega(veca xx vecb))=`
`rArr lambda-mu=1`
`rArr lambda=mu+1`
Now, `veca.vecb=0 rArr veca,vecb, veca xx vecb` are mutually perpendicular.
`|vecc|=1 rArr lambda^(2)+mu^(2)+omega^(2)=1`
`rArr (mu+1)^(2)+mu^(2)+omega^(2)=1`
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE|Exercise JEE Main Previous Year|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos

Similar Questions

Explore conceptually related problems

If veca,vecb,vecc are unit vectors such that veca+vecb+vecc=vec0 , find the value of veca*vecb+vecb*vecc+vecc*veca .

If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+vecb)xx(veca+vecc)}xx(vecbxxvecc).(vecb+vecc)=

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

Prove that [veca-vecb,vecb-vecc,vecc-veca]=0

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

If veca,vecb,vecc be unit vectors such that veca.vecb=veca.vecc=0 and the angle between vecb and vecc is pi//6 . Prove that veca=pm2(vecbxxvecc)

If veca,vecb are two unit vectors such that veca+(veca xx vecb)=vecc , where |vecc|=2 , then value of [vecavecbvecc] is

If veca, vecb,vecc are unit vectors such that veca.vecb = 0= veca.vecc and the angle between vecb and vecc is pi//3 then the value of |vecaxxvecb -veca xx vecc| is

If veca,vecb,vecc are three vectors such that veca+2vecb+vecc=vec0 and |veca|=3,|vecb|=4,|vecc|=7 , find the angle between veca and vecb .