Home
Class 12
MATHS
Let triangleABC be a given triangle. If ...

Let `triangleABC` be a given triangle. If `|vec(BA)-tvec(BC)|ge|vec(AC)|` for any `t in R`,then `triangleABC` is

A

Equilateral

B

Right angled

C

Isosceles

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B

`|vec(BA)|^(2)+t^(2)|vec(BC)|^(2)-2vec(BA).vec(BC).t-|vec(AC)|^(2)ge0 AA t in R`
Discrimiant of the quadratic equation `le0`
`rArr 4(vec(BA).vec(BC))^(2)-4|vec(BC)|^(2)|vec(BA)|^(2)+4|vec(BC)|^(2)|vec(AC)|^(2)le0`
Using `(vec(BA).vec(BC))^(2)-|vec(BC)|^(2)|vec(BA)|^(2)`
`=-|vec(BA) xx vec(BC)|^(2)`
`rArr =-|vec(CA) xx vec(BC)|^(2)`
But `|vec(AC) xx vec(BC)|=|vec(AC)||vec(BC)|sinC`
`rArr sin^(2) Cge1`
`rArr sinC=+1 rArr angleC=pi//2`
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE|Exercise JEE Main Previous Year|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos

Similar Questions

Explore conceptually related problems

Let P(11, 7), Q(13.9, 4) an dR(9.5, 4) be the mid points of the sides AB, BC and AC respectively of triangleABC . Find the coordinates of the vertices A, B, and C. Hence find the area of triangleABC and compare this with area of trianglePQR .

Orthocenter of an equilateral triangle ABC is the origin O. If vec(OA)=veca, vec(OB)=vecb, vec(OC)=vecc , then vec(AB)+2vec(BC)+3vec(CA)=

Consider the triangle ABC with vertices A(1, 1, 1) B(1, 2, 3) and C(2, 3, 1). (a) Find vec(AB) and vec(AC) Find vec (AB) xx vec (AC) (c) Hence find the area of the triangle ABC.

Statement 1: If vec ua n d vec v are unit vectors inclined at an angle alphaa n d vec x is a unit vector bisecting the angle between them, then vec x=( vec u+ vec v)//(2sin(alpha//2)dot Statement 2: If "Delta"A B C is an isosceles triangle with A B=A C=1, then the vector representing the bisector of angel A is given by vec A D=( vec A B+ vec A C)//2.

Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vector in the directions of the sides vec(QR) , vec(RP),vec(PQ) respectively , of a triangle PQR. |vec(OX)xxvec(OY)|=

If A (veca).B(vecb) and C(vecc) are three non-collinear point and origin does not lie in the plane of the points A, B and C, then for any point P(vecP) in the plane of the triangleABC such that vector vec(OP) is bot to plane of trianglABC , show that vec(OP)=([vecavecbvecc] (vecaxxvecb+vecbxxvecc+veccxxveca))/(4Delta^(2))

If in a right-angled triangle A B C , the hypotenuse A B=p ,then vec(AB).vec(AC)+ vec(BC). vec(BA)+ vec(CA).vec(CB) is equal to 2p^2 b. (p^2)/2 c. p^2 d. none of these

If D,E and F are the mid-points of the sides BC, CA and AB respectively of a triangle ABC and lambda is scalar, such that vec(AD) + 2/3vec(BE)+1/3vec(CF)=lambdavec(AC) , then lambda is equal to

If vec a , vec ba n d vec c are the position vectors of the vertices A ,Ba n dC respectively, of A B C , prove that the perpendicular distance of the vertex A from the base B C of the triangle A B C is (| vec axx vec b+ vec bxx vec c+ vec cxx vec a|)/(| vec c- vec b|)dot