Home
Class 12
MATHS
veca and vecb are two vectors such that ...

`veca and vecb` are two vectors such that `|veca|=1 ,|vecb|=4 and veca. Vecb =2 . If vecc = (2vecaxx vecb) - 3vecb` then find angle between `vecb and vecc`.

A

`pi/3`

B

`pi/6`

C

`(3pi)/(4)`

D

`(5pi)/(6)`

Text Solution

Verified by Experts

The correct Answer is:
D

`|veca|=1,|vecb|=4,veca.vecb=2`
`vecc = (2veca xx vecb)-3vecb`
`rArr vecc +3vecb=2veca xx vecb`
`therefore veca.vecb=2`
`rArr |veca|.|vecb|costheta=2`
`rArr costheta=2/(|veca|.|vecb|)=2/4`
`rArr costheta=1/2`
`therefore theta=pi/3`
`rArr |vecc+3vecb|^(2)=|2veca xx vecb|^(2)`
`rArr |vecc|^(2)+9|vecb|^(2)+2vecc.3vecb=4|veca|^(2)|vecb|^(2)sin^(2)theta`
`rArr |vecc|^(2)+96+6(vecb.vecc)=0`.............(1)
`therefore vecc=2veca xx vecb-3vecb`
taking dot product with `vecb`
`rArr vecb.vecc=0-3 xx 16`
`rArr vecb.vecc=-48`
Putting value of `vecb.vecc` in equation (1)
`|vecc|^(2)+96-6 xx 48=0`
`rArr |vecc|^(2)=192`
Again, putting value of `|vecc|` in equation (1)
`192+96+6|vecb|.|vecc|cosalpha=0`
`rArr 6 xx 4 xx 8sqrt(3) cosalpha=-288`
`rArr cosalpha=(-288)/(6 xx 4 xx 8sqrt(3)) = -3/2sqrt(3)`
`rArr cosalpha=-sqrt(3)/2`
`therefore alpha=(5pi)/(6)`
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE|Exercise JEE Main Previous Year|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos

Similar Questions

Explore conceptually related problems

If veca and vecb are two vectors, such that |veca xx vecb|=2 , then find the value of [veca vecb veca xx vecb]

If |veca|+|vecb|=|vecc|and veca+vecb=vecc then find the angle between veca and vecb .

If veca ,vecb, vec c are three vectors such that veca + 2 vecb + vecc = vec0, and |veca|=3, |vecb|=4, |vec c|=7, find the angle between vec a and vecb.

If veca and vecb are two vectors such that |veca|=10,|vecb|=15" ""and"" "veca.vecb=75sqrt(2), find the angle between veca and vecb .

If veca+vecb+vecc =0, |veca|=3, |vecb|=5, |vecc|=7 then the angle between veca and vecb is :

If veca, vecb and vecc are vectors such that |veca|=3,|vecb|=4 and |vecc|=5 and (veca+vecb) is perpendicular to vecc, (vecb+vecc) is perpendicular to veca and (vecc+veca) is perpendicular to vecb then |veca+vecb+vecc|= (A) 4sqrt(3) (B) 5sqrt(2) (C) 2 (D) 12

veca+vecb+vecc=vec0, |veca|=3, |vecb|=5,|vecc|=9 ,find the angle between veca and vecc .

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|