Home
Class 12
MATHS
Number of integral value(s) of lambda fo...

Number of integral value(s) of `lambda` for which vectors `x^(2)hati-hatj+xhatk, (lambda-1)hati-2lambdahatj+hatk` and `hati-hatj+hatk`, in the order from right-handed system `AA x` `in`R, is

A

0

B

2

C

4

D

6

Text Solution

Verified by Experts

The correct Answer is:
A

`|{:(x^(2),-1,x),(lambda-1,-2lambda,1),(1,-1,1):}| gt 0`
`(2lambda-1)x^(2)-(lambda+1)x-(lambda-2) lt 0 AA x in R`
`2lambda-1 gt 0` and `(lambda+1)^(2)+4(2lambda-1)(lambda-2) gt 0`
`rArr lambda^(2)-2lambda+1 gt 0` and `lambda gt 1/2`
`rArr (lambda-1)^(2)` and `lambda gt 1/2`
`rArr` there is no value of `lambda`.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise JEE Previous Year|12 Videos
  • SEQUENCE AND SERIES

    CENGAGE|Exercise Question Bank|1 Videos

Similar Questions

Explore conceptually related problems

The number of distinct values of lamda , for which the vectors -lamda^(2)hati+hatj+hatk, hati-lamda^(2)hatj+hatk and hati+hatj-lamda^(2)hatk are coplanar, is

Find the value of lambda for which the vectors veca = 3hati + 2hatj + 9 hatk and vecb = hati + lambda hatj + 3hatk are orthogonal.

Knowledge Check

  • The value of lambda for which the vectors 3hati-6hatj+hatk and 2hati-4hatj+lambdahatk are parallel is

    A
    `(2)/(3)`
    B
    `(3)/(2)`
    C
    `(5)/(2)`
    D
    `(2)/(5)`
  • Similar Questions

    Explore conceptually related problems

    Determine whether the three vectors 2hati+3hatj+hatk, hati-2hatj+2hatk and 3hati+hatj+3hatk are coplanar.

    Show that the vectors hati+2hatj-3hatk , 2hati-hatj+2hatk and 3hati+hatj-hatk are coplanar.

    Show that the vectors 3hati-2hatj+hatk,hati-3hatj+5hatk and 2hati+hatj-4hatk form a right angled triangle.

    Show that the vectors -hati-2hatj-6hatk,2hati-hatj+hatk" " and -hati+3hatj+5hatk, form a right angled triangle.

    Find the sum of the vectors veca=hati-2hatj+hatk,vecb=-2hati+4hatj+5hatkandvecc=hati-6hatj--7hatk .

    Show that the vectors 2hati-hatj+hatk,hati-3hatj-5hatkand3hati-4hatk form the vertices of a right angled triangle.

    If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=