Home
Class 12
MATHS
Let veca,vecb,vecc be three linearly ind...

Let `veca,vecb,vecc` be three linearly independent vectors, then `([veca+2vecb-vecc 2veca+vecb+vecc4veca-vecb+5vecc])/([vecavecbvecc])`

A

0

B

1

C

2

D

`-1`

Text Solution

Verified by Experts

The correct Answer is:
A

`vecx=veca+2vecb-vecc`
`vecy=2veca+vecb+vecc`
`vecz=4veca-vecb+5vecc`
Now `|{:(1,2,-1),(2,1,1),(4,-1,5):}|=0`
Thus, vectors are coplanar.
`rArr [veca +2vecb-vecc, 2veca+vecb+vecc , 4veca-vecb+5vecc]=0`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise JEE Previous Year|12 Videos
  • SEQUENCE AND SERIES

    CENGAGE|Exercise Question Bank|1 Videos

Similar Questions

Explore conceptually related problems

Let vecC=vecA+vecB

If veca, vecb, vecc are three mutually perpendicular unit vectors then |veca+vecb+vecc| is

Prove that [veca+vecb vecb+vecc vecc+veca]=2[veca vecb vecc]

[veca, veca+vecb, veca+vecb+vecc] is :

If veca, vecb and vecc 1 are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca,vecb, vecc and veca',vecb',vecc' are reciprocal system of vectors, then prove that veca'xxvecb'+vecb'xxvecc'+vecc'xxveca'=(veca+vecb+vecc)/([vecavecbvecc])

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca,vecb,vecc are three mutually perpendicular unit vectors, then prove that abs(veca+vecb+vecc)=sqrt3