Home
Class 12
MATHS
If V is the volume of the parallelepiped...

If V is the volume of the parallelepiped having three coterminous edges as `veca,vecb` and `vecc`, then the volume of the parallelepiped having three coterminous edges as
`vecalpha = (veca.veca)veca+(veca.vecb)vecb+(veca.vecc)vecc`,
`vecbeta=(vecb.veca)veca+(vecb.vecb)+(vecb.vecc)vecc`
and `veclambda=(vecc.veca)veca+(vecc.vecb)vecb+(vecc.vecc)vecc` is

A

3V

B

4V

C

`V^(2)`

D

`V^(3)`

Text Solution

Verified by Experts

The correct Answer is:
D

`V=[vecavecbvecc]`
`therefore [vecalphavecbetaveclambda]=|{:(veca.veca, veca.vecb, veca.vecc),(vecb.veca, vecb.vecb, vecb.vecc),(vecc.veca, vecc.vecb, vecc.vecc):}|[vecavecbvecc]`
`=[vecavecbvecc][vecavecbvecc][vecavecbvecc]=V^(3)`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise JEE Previous Year|12 Videos
  • SEQUENCE AND SERIES

    CENGAGE|Exercise Question Bank|1 Videos

Similar Questions

Explore conceptually related problems

The volume of a tetrahedron fomed by the coterminus edges veca , vecb and vecc is 3 . Then the volume of the parallelepiped formed by the coterminus edges veca +vecb, vecb+vecc and vecc + veca is

[veca, veca+vecb, veca+vecb+vecc] is :

The vectors veca-vecb,vecb-vecc,vecc-veca are

Prove that [veca+vecb vecb+vecc vecc+veca]=2[veca vecb vecc]

Show that : [vecl vecm vecn] [veca vecb vecc]=|(vecl.veca, vecl.vecb, vecl.vecc),(vecm.veca, vecm.vecb, vecm.vecc),(vecn.veca, vecn.vecb, vecn.vecc)|

If veca=2veci+3vecj-veck, vecb=-2veci+5veck, vecc=vecj-3veck verify that veca xx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc.

If the vectors veca, vecb, and vecc are coplanar show that |(veca,vecb,vecc),(veca.veca, veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc)|=0

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca, vecb and vecc be three non-coplanar vectors and a',b' and c' constitute the reciprocal system of vectors, then prove that i. vecr=(vecr.veca')veca+(vecr.vecb')vecb+(vecr.vecc')vecc ii. vecr= (vecr.veca)veca'+(vecr.vecb)vecb' + (vecr.vecc) vecc'

Prove that [veca-vecb,vecb-vecc,vecc-veca]=0