Home
Class 12
MATHS
Let the equation x^(5) + x^(3) + x^(2) ...

Let the equation `x^(5) + x^(3) + x^(2) + 2 = 0` has roots `x_(1), x_(2), x_(3), x_(4) and x_(5),` then find the value of `(x_(1)^(2) - 1)(x_(2)^(2) - 1)(x_(3)^(2) - 1)(x_(4)^(2) - 1)(x_(5)^(2) - 1).`

Text Solution

Verified by Experts

The correct Answer is:
5

`x^(5) + x^(3) + x^(2) + 2 = (x -x_(1)) (x -x_(2))(x -x_(3))(x -x_(4))(x -x_(5))`
Putting x = 1, we get,
`5 = (1 -x_(1)) (1 -x_(2))(1 -x_(3))(1 -x_(4))(1 -x_(5))`
Putting x = - 1, we get,
`1 = (-1 -x_(1)) (-1 -x_(2))(-1 -x_(3))(-1 -x_(4))(-1 -x_(5))`
Multiplying, we get,
`5 = (x_(1)^(2) - 1)(x_(2)^(2) - 1)(x_(3)^(2) - 1)(x_(4)^(2) - 1)(x_(5)^(2) - 1)`
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE|Exercise Exercise 2.3|3 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Exercise 2.4|3 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Exercise 2.1|3 Videos
  • STRAIGHT LINES

    CENGAGE|Exercise JEE Advanced Previous Year|4 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Question Bank|12 Videos

Similar Questions

Explore conceptually related problems

If x^(2) + (1)/(x^(2)) = 23 , then find the value of x + (1)/( x) and x^(3) + (1)/( x^(3))

Find the value of int_(0)^(1)root(3)(2x(3)-3x^(2)-x+1)dx .

If x in (0, 1) , then find the value of tan^(-1) ((1 -x^(2))/(2x)) + cos^(-1) ((1 -x^(2))/(1 + x^(2)))

Divide (2x^(2) + x-3)/((x-1)^(2)) " by " (2x^(2) + 5x +3)/(x^(2)-1)

Evaluate lim_(xtooo) ((7x^(2)+1)/(5x^(2)-1))^((x^(5))/(1-x^(3))).

If p_(1)^(x_(1))timesp_(2)^(x_(2))timesp_(3)^(x_(3))timesp_(4)^(x_(4))=11340 where p_(1), p_(2), p_(3), p_(4) are primes in ascending order and x_(1), x_(2), x_(3), x_(4) are integers, find the value of p_(1), p_(2), p_(3), p_(4) and x_(1), x_(2), x_(3), x_(4) .

Evaluate the definite integrals int_(1)^(2)(5x^(2))/(x^(2)+4x+3)