Home
Class 12
MATHS
If a + b + c = 0 and a^(2) + b^(2) + c^(...

If `a + b + c = 0 and a^(2) + b^(2) + c^(3) = 4,` them find the value of `a^(4) + b^(4) +c^(4)`.

Text Solution

Verified by Experts

The correct Answer is:
`a^(4) + b^(4) +c^(4) = 8`

`(a + b + c)^(2) = 0`
`rArr a^(2) + b^(2) + c^(2) + 2(ab + bc + ca) = 0`
`rArr ab + bc + ca = 2`
On squaring, we get
`a^(2) b^(2) + b^(2)c^(2)+ c^(2)a^(2)+ 2(ab^(2)c + 2a^(2) bc + 2bac^(2) = 4`
`rArr a^(2) b^(2) + b^(2)c^(2)+ c^(2)a^(2)+ 2abc (a + b + c) = 4`
`rArr a^(2) b^(2) + b^(2)c^(2)+ c^(2)a^(2) = 4`
Now `a^(2) + b^(2) + c^(2) = 4`
On squaring, we get
`a^(4)+ b^(4)+ c^(4)+2(a^(2) b^(2) + b^(2)c^(2)+ c^(2)a^(2) = 16`
`rArr a^(4)+ b^(4)+ c^(4)= 8`
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE|Exercise Exercise 2.4|3 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Exercise 2.5|4 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Exercise 2.2|5 Videos
  • STRAIGHT LINES

    CENGAGE|Exercise JEE Advanced Previous Year|4 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Question Bank|12 Videos

Similar Questions

Explore conceptually related problems

If a+2b+3c=4, then find the least value of a^2+b^2+c^2dot

If a ,b ,c ,d ,e are in A.P., the find the value of a-4b+6c-4d+edot

If det, (A-B) ne 0, A^(4)=B^(4), C^(3) A=C^(3)B and B^(3)A=A^(3)B , then find the value of det. (A^(3)+B^(3)+C^(3)) .

If a,b,c are positive real numbers and 2a+b+3c=1 , then the maximum value of a^(4)b^(2)c^(2) is equal to

If (21. 4)^a=(0. 00214)^b=100 , then the value of 1/a-1/b is 0 (b) 1 (c) 2 (d) 4

If a^(2)+b^(2)+c^(2)=1 where, a,b, cin R , then the maximum value of (4a-3b)^(2) + (5b-4c)^(2)+(3c-5a)^(2) is

If a gt 0 and b^(2) - 4 ac = 0 then solve ax^(3) + (a + b) x^(2) + (b + c) x + c gt 0 .

If a= .^(20)C_(0) + .^(20)C_(3) + .^(20)C_(6) + .^(20)C_(9) + "…..", b = .^(20)C_(1) + .^(20)C_(4) + .^(20)C_(7) + "……"' and c = .^(20)C_(2) + .^(20)C_(5) + .^(20)C_(8) + "…..", then Value of (a-b)^(2) + (b-c)^(2) + (c-a)^(2) is