Home
Class 12
MATHS
If alpha and beta are the roots of x^2 -...

If `alpha` and `beta` are the roots of `x^2 - p (x+1) - c = 0`, then the value of `(alpha^2 + 2alpha+1)/(alpha^2 +2 alpha + c) + (beta^2 + 2beta + 1)/(beta^2 + 2beta + c)`

Text Solution

Verified by Experts

The given equation os `x^(2) - px - (p + c) = 0 ` . Therefore,
` alpha + beta = p, alpha beta = - (p + c)`
So, ` (alpha + 1 ) (beta + 1) = alpha beta + (alpha + beta) + 1`
` - (p + c) + p + 1`
` = 1 - c ` (1)
Now , `(alpha^(2) + 2 alpha + 1 )/(alpha^(2) + 2alpha + c) + (beta^(2) +2 beta + 1)/(beta^(2) + 2 beta + c)`
` = ((alpha + 1)^(2))/((alpha + 1)^(2) - (1 - c)) + ((beta + 1)^(2))/((beta + 1)^(2) - (1 - c)) `
` = ((alpha + 1)^(2))/((alpha + 1)^(2) - (alpha + 1)(beta +1)) + ((beta + 1)^(2))/((beta + 1)^(2) - (alpha + 1 )(beta +1)) ` [Using (1)]
`(alpha + 1)/(alpha - beta ) + (beta + 1)/(beta - alpha ) = ((alpha + 1) - (beta +1))/(alpha - beta ) = 1` .
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE|Exercise Exercise 2.10|5 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Exercise 2.11|8 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Exercise 2.8|11 Videos
  • STRAIGHT LINES

    CENGAGE|Exercise JEE Advanced Previous Year|4 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Question Bank|12 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of 2x^(2) – 3x -4 = 0 find the value of 2 alpha^(2)+ beta^(2)

If alpha and beta are the roots of x^(2)+6x-4=0 , find the values of (alpha-beta)^(2) .

If alpha and beta are the roots of x^(2)+6x-4=0 , find the value of (alpha-beta)^(2) .

If alpha and beta are the roots of the equation 3x^(2) - 5x + 2 = 0 , then find the value of alpha^2beta + alphabeta^2 .

Let alpha and beta be the roots of x^2 - 5x - 1 = 0 then the value of (alpha^15 + alpha^11 + beta^15 + beta^11)/(alpha^13 + beta^13) is

If alpha, beta are the roots of x^(2) - px + q = 0 and alpha', beta' are the roots of x^(2) - p' x + q' = 0 , then the value of (alpha - alpha')^(2) + (beta + alpha')^(2) + (alpha - beta')^(2) + (beta - beta')^(2) is

If alpha and beta are the roots of x^(2) + x + 1 = 0, then alpha^(2020) + beta^(2020) is

If alpha and beta are roots of the equation x^(2) + 2x + 8 = 0 the the value of (alpha)/(beta) + (beta)/(alpha) is ………….. .

If alpha and beta are the roots of the equation x^2 + 2x +8=0 then the value of (alpha)/(beta) + (beta)/(alpha) is ………………….. .