Home
Class 12
MATHS
For and odd integer n ge 1, n^(3) - (n -...

For and odd integer `n ge 1, n^(3) - (n - 1)^(3) ` + ……
`+ (- 1)^(n-1) 1^(3)`

Text Solution

Verified by Experts

Since n is an odd integer, `(-1)^(n-1)=1` and n-1,n-3,n-5,… are even integers.
The given series is
`n^(3)-(n-1)^(3)+(n-2)^(3)-(n-3)^(3)+…+(-1)^(n-1)1^(3)`
`=[n^(3)+(n-1)^(3)+(n-2)^(3)+..+1^(3)]-2[(n-1)^(3)+(n-3)^(3)+…+2^(3)]`
`=(n^(2)(n+1)^(2))/4-2xx2^(3)[1^(3)+2^(3)+3^(3)+..+((n-1)/2)^(3)]`
`=(n^(2)(n+1)^(2))/4-16[1/2((n-1)/2)((n-1)/2+1)]^(2)`
`=(n^(2)(n+1)^(2))/4-((n-1)^(2)(n+1)^(2))/4`
`=((n+1)^(2))/4[n^(2)-(n-1)^(2)]`
`=1/4(n+1)^(2)(2n-1)`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.1|3 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.2|10 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Multiple Correct Answer|4 Videos
  • PROBABILITY II

    CENGAGE|Exercise JEE Advanced Previous Year|25 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos

Similar Questions

Explore conceptually related problems

Statement 1: Sum of the series 1^3-2^3+3^3-4^3++11^3=378. - Statement 2: For any odd integer ngeq1,n^3-(n-1)^3++(-1)^(n-1)1^3=1/4(2n-1)(n+1)^2dot

By the principle of mathematic induction, prove that, for n ge 1 , 1^(2) + 2^(2) + 3^(2) + …+n^(2) gt n^(3)/3

By the principle of mathematical induction, prove that, for nge1 1^(3) + 2^(3) + 3^(3) + . . .+ n^(3)=((n(n+1))/(2))^(2)

For a fixed positive integer n , if =|n !(n+1)!(n+2)!(n+1)!(n+2)!(n+3)!(n+2)!(n+3)!(n+4)!| , then show that [/((n !)^3)-4] is divisible by ndot

If n_1, n_2 are positive integers, then (1 + i)^(n_1) + ( 1 + i^3)^(n_1) + (1 + i_5)^(n_2) + (1 + i^7)^(n_2) is real if and only if :

Using the mathematical induction, show that for any natural number n, 1/(1.2.3) + 1/(2.3.4) + 1/(3.4.5)+ …+ 1/(n.(n+1).(n+2)) =(n(n+3))/(4(n+1)(n+2))

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

CENGAGE-PROGRESSION AND SERIES-Examples
  1. Find the sum 2xx5+5xx9+8xx13+11xx17+.. n terms.

    Text Solution

    |

  2. Find the sum of the series 1xxn+2(n-1)+3xx(n-2)++(n-1)xx2+nxx1.

    Text Solution

    |

  3. For and odd integer n ge 1, n^(3) - (n - 1)^(3) + …… + (- 1)^(n-1) ...

    Text Solution

    |

  4. Find the sum of the following series up to n terms: 1^3/1+(1^3+2^3)/...

    Text Solution

    |

  5. Find the sum of first n terms of the series 1^3+3xx2^2+3^3+3xx4^2+5^3+...

    Text Solution

    |

  6. If sum(r=1)^n Tr=n(2n^2+9n+13), then find the sum sum(r=1)^nsqrt(Tr)do...

    Text Solution

    |

  7. Find the sum to n terms of the series 3+15+35+63+

    Text Solution

    |

  8. Find the sum of the following series to n terms 5+7+13+31+85+

    Text Solution

    |

  9. Find the sum(k=1)^(oo) sum(n=1)^(oo)k/(2^(n+k)).

    Text Solution

    |

  10. Find the sum of the products of the ten numbers +-1,+-2,+-3,+-4,a n d+...

    Text Solution

    |

  11. Find the sumsum(0leiltjlen)1.

    Text Solution

    |

  12. Let the terms a(1),a(2),a(3),…a(n) be in G.P. with common ratio r. Let...

    Text Solution

    |

  13. Find the sum 1+1/(1+2)+1/(1+2+3)++1/(1+2+3++n)dot

    Text Solution

    |

  14. Find the sum of the series: (1)/((1xx3))+(1)/((3xx5))+(1)/((5xx7)...

    Text Solution

    |

  15. Find the sum to n terms of the series 3//(1^2xx2^2)+5//(2^2xx3^2)+7//(...

    Text Solution

    |

  16. Find the sum to n terms of the series: 1/(1+1^2+1^4)+1/(1+2^2+2^4)+1/...

    Text Solution

    |

  17. Find the sum Sigma(r=1)^(n) r/((r+1)!). Also, find the sum of infinite...

    Text Solution

    |

  18. Find the sum Sigma(r=1)^(n) 1/(r(r+1)(r+2)(r+3)) Also,find Sigma(r=1...

    Text Solution

    |

  19. Find the sum underset(r=1)r(r+1)(r+2)(r+3).

    Text Solution

    |

  20. Find the sum of the series sum(r=11)^(99)(1/(rsqrt(r+1)+(r+1)sqrtr))

    Text Solution

    |