Home
Class 12
MATHS
Let a1,a2,a3 ….and b1 , b2 , b3 … be two...

Let `a_1,a_2,a_3` ….and `b_1 , b_2 , b_3 …` be two geometric progressions with `a_1= 2 sqrt(3)` and `b_1= 52/9 sqrt(3)` If `3a_99b_99=104` then find the value of `a_1 b_1+ a_2 b_2+…+a_nb_n`

Text Solution

Verified by Experts

The correct Answer is:
3536

`a_(1)=2sqrt3andb_(1)=52/9sqrt3`
Also, `3a_(99)b_(99)=104`
`rArra_(1)r_(1)^(98)b_(1)r_(2)^(98)=104//3`
`rArrr_(1)^(98)r_(2)^(98)=1` (putting the values of `a_(1)` and `b_(1)`)
`rArrr_(1)r_(2)=1`
`rArra_(i)b_(i)=104/3AAi`
`thereforea_(1)b_(1)+a_(2)b_(2)+...+a_(n)b_(n)=102xx104/3`
`=34xx104`
=3536
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.5|10 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.6|11 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.3|9 Videos
  • PROBABILITY II

    CENGAGE|Exercise JEE Advanced Previous Year|25 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos

Similar Questions

Explore conceptually related problems

If a_(n+1)=1/(1-a_n) for n>=1 and a_3=a_1 . then find the value of (a_2001)^2001 .

Let a_1,a_2,a_3,... be in harmonic progression with a_1=5a n da_(20)=25. The least positive integer n for which a_n<0

Let a_1,a_2,.........a_n be real numbers such that sqrt(a_1)+sqrt(a_2-1)+sqrt(a_3-2)++sqrt(a_n-(n-1))=1/2(a_1+a_2+.......+a_n)-(n(n-3)/4 then find the value of sum_(i=1)^100 a_i

Let a1,a2,a3 ...... a11 be real numbers satisfying a_1 =15, 27-2a_2 > 0 and a_k= 2a_(k-1) - a_(k-2) for k=3,4,.....11 If (a1^2 +a2^2.......a11^2)/11 = 90 then find the value of (a_1+a_2....+a_11)/11

If a_1+a_2+a_3+...+a_n=1AAa_i>0,i=1,2,3, ,n , then find the maximum value of a_1 a_2a_3a_4a_5.... a_n.

Let a_1, a_2, ,a_(10) be in A.P. and h_1, h_2, h_(10) be in H.P. If a_1=h_1=2a n da_(10)=h_(10)=3,t h e na_4h_7 is

If the equation of the locus of a point equidistant from the points (a_1, b_1) and (a_2, b_2) is (a_1-a_2)x+(b_1-b_2)y+c=0 , then the value of c is

Consider an A. P .a_1,a_2,a_3,..... such that a_3+a_5+a_8 =11and a_4+a_2=-2 then the value of a_1+a_6+a_7 is.....

Let X={a_1, a_2, ,a_6}a n dY={b_1, b_2,b_3}dot The number of functions f from xtoy such that it is onto and there are exactly three elements xinX such that f(x)=b_1 is 75 (b) 90 (c) 100 (d) 120

Let a_1,a_2,a_3…., a_49 be in A.P . Such that Sigma_(k=0)^(12) a_(4k+1)=416 and a_9+a_(43)=66 .If a_1^2+a_2^2 +…+ a_(17) = 140 m then m is equal to