Home
Class 12
MATHS
underset("n-digits")((666 . . . .6)^(2))...

`underset("n-digits")((666 . . . .6)^(2))+underset("n-digits")((888 . . . .8))` is equal to

Text Solution

Verified by Experts

`S_(1)=underset(n "digits")(6666…)`
`=6+6xx10^(1)+6xx10^(2)+….+6xx10^(n-1)`
`=6xx((10^(n)-1))/(10-1)=2/3(10^(n)-1)`
Similarly,
`S_(2)=8/9(10^(n)-1)`
`rArrS_(1)^(2)+S_(2)=4/9(10^(n)-1)^(2)+8/9(10^(n)-1)`
`=4/9(10^(n)-1)[10^(n)-1+2]`
`=4/9[10^(2n)-1]`
Also, `underset(2n "digits")(4444...4)=4+$xx10+4xx10^(2)+...+4xx10^(2n-1)`
`=4((10^(2n)-1))/(10-1)`
Hence, proved.
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.6|11 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.7|4 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.4|13 Videos
  • PROBABILITY II

    CENGAGE|Exercise JEE Advanced Previous Year|25 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos

Similar Questions

Explore conceptually related problems

underset(r=0)overset(n)(sum)sin^(2)""(rpi)/(n) is equal to

If f(x)=(x)/((1+x^(n))^(1//n)) "for n" ge 2 and g(x) = underset("f occurs n times")ubrace(("fofo....of"))(x). "Then",intx^(n-2)g(x) dx equal

underset(Br)underset(|)(C )H_(2)-underset(Br)underset(|)(C )H_(2)overset((A))(to)CH-=CH , where A is ,

The sum of the digits of a number consisting of three digits is 12. The middle digit is equal to half of the sum of the other two. If the order of the digit be reversed, the number is diminished by 198. Find the number.

The number of n digit numbers which consists of the digit 1 and 2 only if each digit is to be used at least once is equal to 510, then n is equal to ________.

Give the IUPAC name for the following alkane. (a) CH_(3)-underset(CH_(2))underset(|)underset(CH_(2))underset(|)(CH)-CH_(2)-CH_(2)-underset(CH_(2))underset(|)underset(CH_(2))underset(|)(CH)-CH_(3) (b) CH_(3)-underset(CH_(3))underset(|)(CH)-underset(CH_(3))underset(|)(CH)-underset(CH_(3))underset(|)underset(CH_(2))underset(|)(CH)-CH_(2)-CH_(2)-CH_(2)-CH_(3)

Find the value underset(n rarr oo)("lim") underset(k =2)overset(n)sum cos^(-1) ((1 + sqrt((k -1) k(k + 1) (k + 2)))/(k(k + 1)))