Home
Class 12
MATHS
Find the sum 1^2+(1^2+2^2)+(1^2+2^2+3^2)...

Find the sum `1^2+(1^2+2^2)+(1^2+2^2+3^2)+` up to 22nd term.

Text Solution

Verified by Experts

The correct Answer is:
23276

`T_(n)=1^(2)+2^(2)+3^(2)+…+n^(2)`
`=(n(n+1)(2n+1))/6`
`=n/6(2n^(2)+3n+1)`
`=(2n^(3)+3n^(2)+n)/6`
`S_(n)=sumT_(n)`
`=1/6[2sumn^(3)+3sumn^(2)+sumn]`
`=1/6{2[(n(n+1))/2]^(2)+3xx(n(n+1)(2n+1))/6+(n(n+1))/2}`
`=1/6[(n^(2)(n+1)^(2))/2+(n(n+1)(2n+1))/6+(n(n+1))/2]`
`=1/6xx1/2n(n+1)[n(n+1)[n(n+1)+(2n+1)+1]`
`=(n(n+1))/12[n^(2)+3n+2]`
For n= 22
`S_(22)=(22xx23)/12[22^(2)+66+2]`
`=(22xx23)12[552]`
`=22xx23xx46`
=23276
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.9|9 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise (Single)|93 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.7|4 Videos
  • PROBABILITY II

    CENGAGE|Exercise JEE Advanced Previous Year|25 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos

Similar Questions

Explore conceptually related problems

Find the sum to n terms of each of the series in 1^2 + (1^2 + 2^2) + (1^2 + 2^2 + 3^2) + ...

Find the sum 1+(1+2)+(1+2+2^(2))+(1+2+2^(2)+2^(3))+ …. To n terms.

Find the sum 11^2-1^2+12^2-2^2+13^2-3^2+……+20^2-10^2

Find the sum (1^2)/(2)+(3^2)/(2^2)+(5^2)/(2^3)+(7^2)/(2^4)+….oo

Find the sum of the series 1^2+3^2+5^2+ ton terms.

Find the sum 1+1/(1+2)+1/(1+2+3)++1/(1+2+3++n)dot

Find the sum Sigma_(r=1)^(oo)(3n^2+1)/((n^2-1)^3)

The sum of first n terms of the series 1_(2) + 2.2^(2) + 3^(2) + 2.4^(2) + 5^(2) + 2.6^(2) + ...... is (n(n + 1)^(2))/4 when n is even. When n odd the sum is