Home
Class 12
MATHS
Find the sum Sigma(j=1)^(n) Sigma(i=1)^...

Find the sum `Sigma_(j=1)^(n) Sigma_(i=1)^(n) I xx 3^j`

Text Solution

Verified by Experts

The correct Answer is:
`(3n(3^n-1)(n+1))/(4)`

`sum_(j=1)^(n)sum_(i=1)^(n)ixx3^(j)=(sum_(j=1)^(n)3^(j))(sum_(i=1)^(n)i)`
`=(3+3^(2)+3^(3)+….+3^(n))xx(1+2+3+..+n)`
`(3(3^(n)-1))/(3-1)xx(n(n+1))/2`
`=(3n(3^(n)-1)(n+1))/4`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.9|9 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise (Single)|93 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.7|4 Videos
  • PROBABILITY II

    CENGAGE|Exercise JEE Advanced Previous Year|25 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos

Similar Questions

Explore conceptually related problems

Find the sum Sigma_(r=1)^(oo) (r)/(r^4+1/4)

If b_i=1-a_i na = Sigma_(i=1)^(n) a_i, nb = Sigma_(i=1)^(n) b_i " then " Sigma_(i=1)^(n) a_b_i+Sigma_(i=1)^(n)(a_i-a)^2=

Find the sum sum_(j=1)^(10)sum_(i=1)^(10)ixx2^(j)

Find the sum Sigma_(r=1)^(oo)(3n^2+1)/((n^2-1)^3)

Find the sum Sigma_(r=1)^(n) r/((r+1)!) . Also, find the sum of infinite terms.

Find the sum sum_(i=0)^r.^(n_1)C_(r-i) .^(n_2)C_i .

The value of Sigma_(i=1)^(n) Sigma_(j=1)^(i) underset(k=1)overset(j) =220, then the value of n equals

Find the sum Sigma_(r=1)^(n) 1/(r(r+1)(r+2)(r+3)) Also,find Sigma_(r=1)^(oo) 1/(r(r+1)(r+2)(r+3))

Find the sum sumsum_(i!=j)^ nC_i^n C_j

Find the sum Sigma_(r=1)^(oo) (r-2)/((r+2)(r+3)(r+4))