Home
Class 12
MATHS
If Sigma(r=1)^(n) Tr=n/8(n+1)(n+2)(n+3) ...

If `Sigma_(r=1)^(n) T_r=n/8(n+1)(n+2)(n+3)` then find `Sigma_(r=1)^(n) 1/T_r`

Text Solution

Verified by Experts

The correct Answer is:
`(n(n+3))/(2(n+1)(n+2))`

`T_(n)=sum_(r=1)^(n)T_(r)-sum_(r=1)^(n-1)T_(r)`
`=(n(n+1)(n+2)(n+3))/8-((n-1)n(n+1)(n+2))/8`
`=(n(n+1)(n+2))/2`
`therefore1/(T_(r))=2/(r(r+1)(r+2))=(r+2-r)/(r(r+1)r+2))`
`=1/(r(r+1))-1/((r+1)(r+2)`
`=V(r )-V(r+1)`
`thereforesum_(r=1)^(n)1/(T^(r))=sum_(r=1)^(n)(V(r )-V(r+1))`
`=V(1)-V(n+1)`
`=1/2-1/((n+1)(n+2))`
`=(n(n+3))/(2(n+1)(n+2))`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise (Single)|93 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise (Multiple & Comprehension)|66 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.8|10 Videos
  • PROBABILITY II

    CENGAGE|Exercise JEE Advanced Previous Year|25 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos

Similar Questions

Explore conceptually related problems

If Sigma_(r=1)^(n) r^4=I(n), " then "Sigma__(r=1)^(n) (2r -1)^4 is equal to

Find the sum Sigma_(r=1)^(n) 1/(r(r+1)(r+2)(r+3)) Also,find Sigma_(r=1)^(oo) 1/(r(r+1)(r+2)(r+3))

A data consists of n observations x_(1), x_(2), ..., x_(n). If Sigma_(i=1)^(n) (x_(i) + 1)^(2) = 9n and Sigma_(i=1)^(n) (x_(i) - 1)^(2) = 5n , then the standard deviation of this data is

If b_i=1-a_i na = Sigma_(i=1)^(n) a_i, nb = Sigma_(i=1)^(n) b_i " then " Sigma_(i=1)^(n) a_b_i+Sigma_(i=1)^(n)(a_i-a)^2=

If sum_(r=1)^n T_r=(3^n-1), then find the sum of sum_(r=1)^n1/(T_r) .

If sum_(r=1)^n T_r=n(2n^2+9n+13), then find the sum sum_(r=1)^nsqrt(T_r)dot

If the sum of the series Sigma_(n=0)^(oo) r^(n),|r|le 1 is s, then find the sum of the series Sigma_(n=0)^(oo) r^(2n),|r|le 1

Find the sum Sigma_(r=1)^(oo)(3n^2+1)/((n^2-1)^3)

If Sigma_(r=1)^(50) (r^2)/(r^2+(11-r)^2) , then the value of n is __________

If x=Sigma_(n=0)^(oo) a^n,y=Sigma_(n=0)^(oo) b^n,z=Sigma_(n=0)^(oo) c^n where a, b,and c are in A.P and |a|lt 1 ,|b|lt 1 and |c|1 then prove that x,y and z are in H.P