Home
Class 12
MATHS
If log(2)(5.2^(x)+1),log(4)(2^(1-x)+1) a...

If `log_(2)(5.2^(x)+1),log_(4)(2^(1-x)+1)` and 1 are in A.P,then x equals

A

`log_(2)5`

B

`1- log_5 2`

C

`log_(5)2`

D

`1-log_(2)5`

Text Solution

Verified by Experts

The correct Answer is:
D

The given numbers are in A.P. Therefore,
`2log_(4)(2^(1-x)+1)=log_(2)(5xx2^(x)+1)+1`
or `2log_(2^(2))(2/(2^(x))+1)=log_(2)(5xx2^(x)+1)+log_(2)2`
or `2/2log_(2)(2/(2^(x))+1)=log_(2)(10xx2^(x)+2)`
or `2/(2^(x))+1=10xx2^(x)+2`
`rArr2/y+1=10y+2`, where `2^(x)=y`
or `10y^(2)+y-2=0`
or `(5y-2)(2y+1)=0`
`rArry=2//5` or `y=-1//2`
`rArr2^(x)=2//5` or `2^(x)=-1//2`
`rArr x=log_(2)2-log_(2)5` `[because2^(x)` cannot be negative`]`
`rArrx=log_(2)2-log_(2)5`
`rArrx=1-log_(2)5`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise (Multiple & Comprehension)|66 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise EXERCIESE ( MULTIPLE CORRECT ANSWER TYPE )|2 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.9|9 Videos
  • PROBABILITY II

    CENGAGE|Exercise JEE Advanced Previous Year|25 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos

Similar Questions

Explore conceptually related problems

if 1,log_(9)(3^(1 - x) + 2) , log_(3)[4.3^(x) - 1] are in A.P. then x equals

If log_(e)5 , log_(e)(5^(x) - 1) and log_(e)(5^(x) - 11/5) are in A.P., then the values of x are

If log_(3)^(2) , log_(3)(2^(x) - 5) and log(2^(x) - 7/2) are in A.P then the value is x is

Solve log_(2)(25^(x+3)-1) = 2 + log_(2)(5^(x+3) + 1) .

Solve log_(4)(x-1)= log_(2) (x-3) .

If a gt 1, x gt 0 and 2^(log_(a)(2x))=5^(log_(a)(5x)) , then x is equal to

If x y^2=4a n d(log)_3((log)_2x)+(log)_(1/3)((log)_(1/2)y)=1 ,then x equals (a) 4 (b) 8 (c) 16 (d) 64

Solve log_(2)(2sqrt(17-2x))=1 - log_(1//2)(x-1) .

4^(log_9 3)+9^(log_2 4)=1 0^(log_x 83) , then x is equal to

Solve log_(4)(2xx4^(x-2)-1)+4= 2x .

CENGAGE-PROGRESSION AND SERIES-Exercise (Single)
  1. If a,b,c are in A.P., then a^(3)+c^(3)-8b^(3) is equal to

    Text Solution

    |

  2. If three positive real numbers a, b, c are in A.P and abc = 4, then th...

    Text Solution

    |

  3. If log(2)(5.2^(x)+1),log(4)(2^(1-x)+1) and 1 are in A.P,then x equals

    Text Solution

    |

  4. The largest term common to the sequences 1, 11 , 21 , 31 , to100 term...

    Text Solution

    |

  5. In any A.P. if sum of first six terms is 5 times the sum of next six t...

    Text Solution

    |

  6. If the sides of a right angled triangle are in A.P then the sines of t...

    Text Solution

    |

  7. If a ,1/b ,a n d1/p ,q ,1/r from two arithmetic progressions of the co...

    Text Solution

    |

  8. Suppose that F(n +1) =( 2f(n)+1)/2 for n = 1, 2, 3,.....and f(1)= 2 ...

    Text Solution

    |

  9. Consider an A. P .a1,a2,a3,..... such that a3+a5+a8 =11and a4+a2=-2 th...

    Text Solution

    |

  10. If a(1),a(2),a(3),…. are in A.P., then a(p),a(q),q(r) are in A.P. if p...

    Text Solution

    |

  11. Let alpha,beta in Rdot If alpha,beta^2 are the roots of quadratic equ...

    Text Solution

    |

  12. If the sum of m terms of an A.P. is same as the sum of its n terms, th...

    Text Solution

    |

  13. If S(n) denotes the sum of n terms of an A.P., S(n +3) - 3S(n + 2) + 3...

    Text Solution

    |

  14. The first term of an A.P. is a and the sum of first p terms is zero, s...

    Text Solution

    |

  15. If Sn denotes the sum of first n terms of an A.P. and (S(3n)-S(n-1))/(...

    Text Solution

    |

  16. The number of terms of an A.P. is even; the sum of the odd terms is 24...

    Text Solution

    |

  17. The number of terms of an A.P. is even; the sum of the odd terms is 24...

    Text Solution

    |

  18. Concentric circles of radii 1,2,3,. . . . ,100 c m are drawn. The inte...

    Text Solution

    |

  19. If a1,a2,a3….a(2n+1) are in A.P then (a(2n+1)-a1)/(a(2n+1)+a1)+(a2n-...

    Text Solution

    |

  20. If a(1), a(2), ……., a(n) are in A.P. with common differece d != 0, the...

    Text Solution

    |