Home
Class 12
MATHS
Prove that a^4+b^4+c^4> a b c(a+b+c),w h...

Prove that `a^4+b^4+c^4> a b c(a+b+c),w h e r ea ,b ,c > 0.`

Text Solution

Verified by Experts

`(a^4+b^4+c^4)/(3)gt((a+b+c)/(3))^4`
`=((a+b+c)/(3))((a+b+c)/(3))^3 `
Now,
`(a+b+c)/(3)gt (abc)^(1//3) or ((a+b+c)/(3)^3 gt abc`
`rArr (a^4+b^4+c^4)/(3)gt((a+b+c)/(3))abc`
or `a^4+b^4+c^4 gt abc (a+b+c)`.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise (Single)|20 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise (Multiple)|5 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise 6.3|6 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|222 Videos

Similar Questions

Explore conceptually related problems

Given a matrix A=[a b c b c a c a b],w h e r ea ,b ,c are real positive numbers a b c=1a n dA^T A=I , then find the value of a^3+b^3+c^3dot

Solve the equation |a-x c b c b-x a b a c-x|=0w h e r ea+b+c!=0.

If a+b+c=0 then check the nature of roots of the equation 4a x^2+3b x+2c=0w h e r ea ,b ,c in Rdot

Suppose A, B, C are defined as A=a^2b+a b^2-a^2c-a c^2, B=b^2c+b c^2-a^2b-a b^2, and C=a^2c+a c^2-b^2c-b c^2, w h e r ea > b > c >0 and the equation A x^2+B x+C=0 has equal roots, then a ,b ,c are in AdotPdot b. GdotPdot c. HdotPdot d. AdotGdotPdot

Use the factor theorem to find the value of k for which (a+2b),w h e r ea ,b!=0 is a factor of a^4+32 b^4+a ^3b(k+3)dot

Find the number of polynomials of the form x^3+a x^2+b x+c that are divisible by x^2+1,w h e r ea , b ,c in {1,2,3,9,10}dot

Evaluate int_a^b(dx)/(sqrt(x)),w h e r ea , b > 0.

Prove that |a b+c a^2b c+a b^2c a+b c^2|=-(a+b+c)xx(a-b)(b-c)(c-a)dot

Prove that |a b+c a^2b c+a b^2c a+b c^2|=-(a+b+c)xx(a-b)(b-c)(c-a)dot

Prove that a cos A + b cos B + c cos C = 4 R sin A sin B sin C.