Home
Class 12
MATHS
If C(r ) = (n!)/(r!(n - r)!), then prove...

If `C_(r ) = (n!)/(r!(n - r)!)`, then prove that
`sqrt(C_(1)) + sqrt(C_(2)) + …. + sqrt(C_(n)) sqrt(n(2^(n) - 1))`

Text Solution

Verified by Experts

A.M. of `(1//2)th` powers `lt (1//2)th` power of A.M.
`therefore ((C_1)^((1)/(2))+(C_2)^((1)/(2))+...+(C_n)^((1)/(2)))/(n)lt ((C_1+C_2+....C_n)/(n))^(1//2)`
or ` (sqrt(C_1)+sqrt(C_2)+....+ sqrt(C_n))/(n) lt ((2^n-1)/(n))^(1//2)`
or ` sqrt(C_1)+sqrt(C_2)+....+sqrt(C_n)lt (n sqrt((2^n-1)))/(sqrt(n))`
Hence,
` sqrt(C_1)+sqrt(C_2)+....+sqrt(C_n) lt sqrt([n(2^n-1)])`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise (Single)|20 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise (Multiple)|5 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise 6.3|6 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|222 Videos

Similar Questions

Explore conceptually related problems

If C_(r) = .^(n)C_(r) then prove that (C_(0) + C_(1)) (C_(1) + C_(2)) "….." (C_(n-1) + C_(n)) = (C_(1)C_(2)"…."C_(n-1)C_(n))(n+1)^(n)//n!

Prove that .^(n)C_(1) + 2 .^(n)C_(2) + 3 .^(n)C_(3) + "…." + n . ^(n)C_(n) = n 2^(n-1) .

If ""^(n)P_(r)=720" "^(n)C_(r) , then r is equal to

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

Prove that if 1 le r le n " then " n xx^((n-1))C_(r-1)= (n-r+1).^(n)C_(r-1)

If U_n=(sqrt(3)+1)^(2n)+(sqrt(3)-1)^(2n) , then prove that U_(n+1)=8U_n-4U_(n-1)dot

If n >2, then prove that C_1(a-1)-C_2xx(a-2)++(-1)^(n-1)C_n(a-n)=a ,w h e r eC_r=^n C_rdot

Prove that .^(n)C_(0) +5 xx .^(n)C_(1) + 9 xx .^(n)C_(2) + "…." + (4n+1) xx .^(n)C_(n) = (2n+1) 2^(n) .

Prove that ""^(n)C_r + ""^(n)C_(r-1) = ""^(n+1)C_r

Prove that sum_(r=0)^(2n)r(.^(2n)C_r)^2=n^(4n)C_(2n) .