Home
Class 12
MATHS
Let a,b,c,d and e be positive real numbe...

Let a,b,c,d and e be positive real numbers such that `a+b+c+d+e=15` and `ab^2c^3d^4e^5=(120)^3xx50`. Then the value of `a^2+b^2+c^2+d^2+e^2` is ___________.

Text Solution

Verified by Experts

The correct Answer is:
55

`(a + (b)/(2) + (b)/(2) + (c )/(3) + (c )/(3) + (c )/(3) + (d)/(4) + (d)/(4) + (d)/(4) + (d)/(4) + (e )/(5) + (e )/(5) + (e )/(5) + (e )/(5) + (e )/(5))/(15) = 1`
`:. G.M = 1`
`G.M = ((ab^(2) c^(3) d^(4) e^(5))/(a.2^(2).3^(3).4^(4).5^(5)))^(1//5) = 1`
`:. A.M= G.M`
`implies a = (b)/(2) = (c )/(3) = (d)/(4) = (e )/(5) = lambda`
`lambda = 1`
`:. a = 1, b = 2, c = 3, d = 4, e = 5`
`:. a^(2) + b^(2) + c^(2) + d^(2) + e^(2) = 1^(2) 2^(2) + 3^(2) + 4^(2) + 5^(2) = 55`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise (Comprehension)|6 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|222 Videos

Similar Questions

Explore conceptually related problems

Let a , b , c , d be positive integers such that (log)_a b=3/2a n d(log)_c d=5/4dot If (a-c)=9, then find the value of (b-d)dot

If a ,b ,c ,da n dp are distinct real numbers such that (a^2+b^2+c^2)p^2-2(a b+b c+c d)p+(b^2+c^2+d^2)lt=0, then prove that a ,b ,c , d are in G.P.

Let a,b,c,d be real numbers such that |a-b|=2, |b-c|=3, |c-d|=4 Then the sum of all possible values of |a-d|=

If a,b,c,d are positive real number with a + b + c + d=2 ,then M =(a+b)(c+d) satisfies the inequality

If intx^2dote^(-2x)dx=e^(-2x)(a x^2+b x+c)+d , then the value of |a/(b c)| is______

If a, b, c, d and p are different real numbers such that (a^2 + b^2 + c^2)p^2 – 2(ab + bc + cd) p + (b^2 + c^2 + d^2) le 0 , then show that a, b, c and d are in GP.

Let the positive numbers a , b , c , d be in AP. Then a b c ,a b d ,a c d ,b c d are

Given A=|a b2c d e2fl m2n|,B=|f2d e2n4l2m c2a b| , then the value of B//A is ___________.

If a ,b ,c ,d are positive real umbers such that a+b+c+d=2 ,then M=(a+b)(c+d) satisfies the relation (a) 0lt=Mlt=1 (b) 1lt=Mlt=2 (c) 2lt=Mlt=3 (d) 3lt=Mlt=4

Let A=[[1, 2], [3 , 4]] and B = [[a, b],[ c, d]] be two matrices such that they are commutative and c ne 3 b then the value of |(a-d)/(2 b-c)| is