Home
Class 12
MATHS
If r lt s le n " then prove that " ^(n)P...

If `r lt s le n " then prove that " ^(n)P_(s) " is divisible by "^(n)P_(r).`

Text Solution

Verified by Experts

Let s=r+k where `0 le k le s -r`. Then,
`.^(n)P_(s)=(n!)/((n-s)!)`
`=n(n-1)(n-2)..(n-(s-1))`
`=n(n-1)(n-2)..(n-(r+k-1))`
`=n(n-1)(n-2)..(n-(r-1))(n-r)(n-(r+1))..(n-(r+k-1))`
`={n(n-1)(n-2)..n-(r-1)}{(n-r)(n-(r+1))..(n-(r+k-1))}`
`= .^(n)P_(r ){(n-r)(n-(r+1))..(n-(r+k-1))}`
`= . ^(n)P_(r )xx " Integer"`
Hence, `.^(n)P_(s)` is divisible by `.^(n)P_(r )`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that if rlt=slt=n ,t h e n ' n P_s is divisible by n P_r .

Prove that ""^(n)C_r + ""^(n)C_(r-1) = ""^(n+1)C_r

Prove ""^(n)P_(r)=""^(n-1)P_(r) +r. ""^(n-1)P_(r-1)

If p is a fixed positive integer, prove by induction that p^(n +1) + (p + 1)^(2n - 1) is divisible by P^2+ p +1 for all n in N .

Let P(n) be the statement: " n^(3)+n is divisible by 3." i. Prove that P(3) is true. ii. Verify whether the statement is true for n = 4.

If P_n is the sum of a GdotPdot upto n terms (ngeq3), then prove that (1-r)(d P_n)/(d r)=(1-n)P_n+n P_(n-1), where r is the common ratio of GdotPdot

Prove that "^n C_r+^(n-1)C_r+...+^r C_r=^(n+1)C_(r+1) .

Prove that if 1 le r le n " then " n xx^((n-1))C_(r-1)= (n-r+1).^(n)C_(r-1)

If ""^(n)P_(r)=k xx ""^(n-1)P_(r-1) what is k: