Home
Class 12
MATHS
Prove that: ((2n)!)/(n !)={1. 3. 5 (2n-1...

Prove that: `((2n)!)/(n !)={1. 3. 5 (2n-1)}2^ndot`

Text Solution

Verified by Experts

`((2n)!)/(n!)=(1xx2xx3xx4xx..xx(2n02)xx(2n-1)2n)/(n!)`
`=({1xx3xx..xx(2n-1)}{2xx4xx..xx(2n)})/(n!)`
`=({1xx3xx..xx(2n-1)}2^(n){1xx2xx..xx(n-1)n})/(n!)`
`=({1xx3xx5xx7xx..xx(2n-1)}2^(n)n!)/(n!)`
`={1xx3xx5xx7xx..xx(2n-1)}2^(n)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that ((2n)!)/(n!) =2^(n) (1,3,5,……..(2n-1)) .

Show that ((2n)!)/(n!) = 2^(n) { 1,3,5 ,…( 2n -1) }

Prove that ((n + 1)/(2))^(n) gt n!

Prove that n! ( n +2) = n ! + ( n + 1) !

If n is a positive integer, prove that 1-2n+(2n(2n-1))/(2!)-(2n(2n-1)(2n-2))/(3!)++(-1)^(n-1)(2n(2n-1)(n+2))/((n-1)!)= (-1)^(n+1)(2n)!//2(n !)^2dot

Prove that .^(2n)C_(n) = ( 2^(n) xx 1 xx 3 xx …(2n-1))/(n!)

Prove that ^n C_0 ^(2n)C_n- ^n C_1 ^(2n-2)C_n+ ^n C_2^(2n-4)C_n-=2^ndot

Prove that "^n C_0^(2n)C_n-^n C_1^(2n-1)C_n+^n C_2xx^(2n-2)C_n++(-1)^n^n C_n^n C_n=1.

Prove that (1^(2))/(3).^(n)C_(1)+(1^(2) + 2^(2))/(7).^(n)C_(2)+(1^(2)+2^(2)+3^(2))/(7).^(n)C_(3)+"...." +(1^(2)+2^(3)+"....."+n^(2))/(2n+1).^(n)C_(n) = (n(n+3))/(6)2^(n-2) .