Home
Class 12
MATHS
Prove that ""^(n-1)Pr+r^(n-1)pr-1=^nPr d...

Prove that `""^(n-1)P_r+r^(n-1)p_r-1=^nP_r dot""`

Text Solution

Verified by Experts

The correct Answer is:
8

`.^(n-1)P_(r )+r^(n-1)P_(r-1)=((n-1)!)/((n-1-r)!)+r((n-1)!)/((n-r)!)`
`=((n-1)!)/((n-1-r)!){1+r(1)/(n-r)}`
`=((n-1)!)/((n-1-r)!)((n)/n-r)`
`=(n!)/((n-r)!)=.^(n)P_(r )`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that ""^(n)C_r + ""^(n)C_(r-1) = ""^(n+1)C_r

Prove ""^(n)P_(r)=""^(n-1)P_(r) +r. ""^(n-1)P_(r-1)

Prove that "^n C_r+^(n-1)C_r+...+^r C_r=^(n+1)C_(r+1) .

Prove that combinatorial argument that ""^(n+1)C_r=^n C_r+^n C_(r-1)""

Prove that .^(n)C_(0) - ^(n)C_(1) + .^(n)C_(2)- ^(n)C_(3) + "…" + (-1)^(r) + .^(n)C_(r) + "…" = (-1)^(r ) xx .^(n-1)C_(r ) .

Prove that (r+1)^n C_r-r^n C_r+(r-1)^n C_2-^n C_3++(-1)^r^n C_r = (-1)^r^(n-2)C_rdot

If ""^(n)P_(r)=k xx ""^(n-1)P_(r-1) what is k:

.^((n-1)C_(r) + ^((n-1)) C_((r-1)) is

If ""^(n)P_r = ""^(n)P_(r-1) and ""^(n)C_(r) = ""^(n)C_(r-1) , find the values of n and r.

If x+y=1, prove that sum_(r=0)^n r* ^nC_r x^r y^(n-r)=nxdot