Home
Class 12
MATHS
x dy - y dx = sqrt(x^(2) + y^(2)) dx...

`x dy - y dx = sqrt(x^(2) + y^(2)) dx`

Text Solution

Verified by Experts

`xdy-ydx=sqrt(x^(2)+y^(2))`dx
or `xdy-[y+sqrt(x^(2)+y^(2))]`dx
or `xdy= [y+sqrt(x^(2)+y^(2))]dx`
or `(dy)/(dx) = y+sqrt(x^(2)+y^(2))/(x)`…………..(1)
Let `F(x,y) = y+sqrt(x^(2)+y^(2))/(x)`
`therefore F(lambdax,lambday)=lambdax+sqrt((lambdax)^(2)+(lambday)^(2))/(lambdax) = y+sqrt(x^(2)+y^(2))/(x) = lambda^(0)F(x,y)`
Therefore, the given differential equation is a homogenous equation,
To, solve it, we make the substitution as
`y=vx`
or `(dy)/(dx)=v+x(dv)/(dx)`
Substituting the values of v and `(dy)/(dx)` in equation (1), we get
`v+x(dv)/(dx) = vx+sqrt(x^(2)+(vx)^(2))/(x)`
or `v+x(dv)/(dx) = v+sqrt(1+v^(2))`
or `(dv)/sqrt(1+v^(2))=(dx)/(x)`
Integrating both sides, we get
`log|v+sqrt(1+v^(2))|=log|x|+logC`
or `log|y/x+sqrt(1+y^(2)/x^(2))|+log|Cx|`
or `y+sqrt(x^(2)+y^(2))=Cx^(2)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.1|6 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.2|6 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Numerical Value Type|3 Videos

Similar Questions

Explore conceptually related problems

(dy)/(dx) = (x^(2)+y^(2))/(xy)

The solution of (x dx+y dy)/(x dy-y dx)=sqrt((1-x^2-y^2)/(x^2+y^2)) is

x^(2)(dy)/(dx) = x^(2) - 2y^(2) + xy

Solve the differential equation (x dy - y dx) y sin ((y)/(x)) = (y dx + x dy) x cos ((y)/(x)) .

Solve (dy)/(dx) = sqrt((4-y^(2))/(4-x^(2)))

y dx + (x - y^(2))dy = 0

The general solution of the differential equation sqrt(1-x^(2)y^(2)) dx = y dx + x dy is

y = sqrt(a^(2) - x^(2)) x ne (-a, a) : x + y (dy)/(dx) = 0(y ne 0)