Home
Class 12
MATHS
Determine its order, degree (if exists) ...

Determine its order, degree (if exists)
`((d^(3)y)/(dx^(3)))^((2)/(3))-3(d^(2)y)/(dx^(2))+5(dy)/(dx)+4=0`

Text Solution

Verified by Experts

The correct Answer is:
Order-3, degree-2

We have `(d^(3)y)/(dx^(3))^(2//3)+4-3(d^(2)y)/(dx^(2))+5(dy)/(dx)=0`
or `(d^(3)y)/(dx^(3))^(2)=(3(d^(2)y)/(dx^(2))-5(dy)/(dx)-4)^(3)`
Clearly, it is differential equation of degree 2 and order 3.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.2|6 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.3|9 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Examples|76 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Numerical Value Type|3 Videos

Similar Questions

Explore conceptually related problems

Determine its order, degree (if exists) ((d^(2)y)/(dx^(2)))^(2)=xsin((d^(2)y)/(dx^(2)))

Determine its order, degree (if exists) x=e^(xy((dy)/(dx)))

Determine its order, degree (if exists) (dy)/(dx)+xy=cotx

Determine its order, degree (if exists) (d^(2)y)/(dx^(2))=xy+cos((dy)/(dx))

Determine its order, degree (if exists) ((d^(2)y)/(dx^(2)))^(3)=sqrt(1+((dy)/(dx)))

Determine its order, degree (if exists) (d^(2)y)/(dx^(2))+5(dy)/(dx)+intydx=x^(3)

Determine its order, degree (if exists) y((dy)/(dx))=(x)/(((dy)/(dx))+((dy)/(dx))^(3))

Determine its order, degree (if exists) sqrt((dy)/(dx))-4(dy)/(dx)-7x=0

Determine its order, degree (if exists) x^(2)(d^(2)y)/(dx^(2))+[1+((dy)/(dx))^(2)]^((1)/(2))=0