Home
Class 12
MATHS
Solve (x-y^(2)x)dx=(y-x^(2)y)dy....

Solve `(x-y^(2)x)dx=(y-x^(2)y)dy`.

Text Solution

Verified by Experts

The correct Answer is:
`(x^(2)-1)=C(y^(2)-1)`

We have `x(1-y^(2))dx=y(1-x^(2))dy`
`therefore (2x)/(x^(2)-1)dx=(2y)/(y^(2)-1)dy`
Integrating both sides, we get
`log_(e)(x^(2)-1)=log_(e)(y^(2)-1)log_(e)C`
`therefore (x^(2)-1)=C(y^(2)-1)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.4|6 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.5|7 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.2|6 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Numerical Value Type|3 Videos

Similar Questions

Explore conceptually related problems

Solve (x^(2)-y) dx+(y^(2)-x)dy=0 , if it passes through origin :

Solve (x+y)^(2)(dy)/(dx) =a^(2)

Solve (dy)/(dx)+(y^(2))/(x^(2))=(y)/(x)

Solve : (x+2y^3)dy/dx=y

Solve (2x+3y)dx+(y-x)dy=0

Solve (x+y(dy)/(dx))/(y-x(dy)/(dx))=x^2+2y^2+(y^4)/(x^2)

Solve e^(x)sqrt(1-y^(2))dx+(y)/(x)dy=0

Solve (dy)/(dx)=(x+y)^2