Home
Class 12
MATHS
e^(x) tan y dx + (1 - e^(x))sec^(2)y dy...

`e^(x) tan y dx + (1 - e^(x))sec^(2)y dy = 0`

Text Solution

Verified by Experts

The correct Answer is:
`tany=C(1-e^(x))`

`e^(x)tanydx+(1-e^(x))sec^(2)ydy=0`
or `(1-e^(x))sec^(2)ydy=-e^(x)tanydx`
or `int(sec^(2)y)(tany)dy=int(-e^(x))/(1-e^(x))`dx
or `log(tany)=log(1-e^(x))+logC`
or `log(tany)=log[C(1-e^(x))]`
or `tany=C(1-e^(x))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.4|6 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.5|7 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.2|6 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Numerical Value Type|3 Videos

Similar Questions

Explore conceptually related problems

Solve the differential equation y e^(x)/(y) dx = (x e^(x)/(y) + y^(2))dy ( y ne 0) .

(1 + e^(x/y)) dx + e^(x)/(y)(1 - (x)/(y)) dy = 0

y(x^(2)y+e^(x))dx-e^(x)dy=0

If int e^(sec x)(sec x tan x f(x)+(sec x tan x + sec^(2) x))dx = e^(sec x)f(x) + C , then a possible choice of f(x) is

e^(x) sec x ( 1 + tan x )

(dy)/(dx) + 3y = e^(-2x)

The general solution of the differential equation e^(x) dy + (y e^(x) + 2x)dx = 0 is