Home
Class 12
MATHS
If a function 'f' satisfies the relation...

If a function 'f' satisfies the relation `f(x)f^('')(x)-f(x)f^(')(x) -f^(')(x)^(2)=0 AA x in R` and `f(0)=1=f^(')(0)`. Then find `f(x)`.

Text Solution

Verified by Experts

The correct Answer is:
`f(x) = e^(e^(x)-1)`

We have `f(x)f^('')(x)-f^(')(x)^(2)=0`
Divide by `f(x)f^(')(x)`, we get
`(f^('')(x))/(f^(')(x))-1=(f^(')(x))/(f(x))`
Integrating both sides, we get ,
`log_(e)f^(')(x)-x=log_(e)f(x)+C`
Since, `f(0)=1=f^(')(0),C=0`
`therefore log_(e)f^(')(x)-log_(e)f(x)=x`
`rArr (log_(e)) f^(')(x)/(f(x))=e^(x)`
Integrating both sides, we get
`log_(e)f(x)=e^(x)+C`
Using `f(0)=1`, we have `C=-1`
`therefore f(x)=e^(e^(x))-1`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.4|6 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.5|7 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.2|6 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Numerical Value Type|3 Videos

Similar Questions

Explore conceptually related problems

If function f satisfies the relation f(x)*f^(prime)(-x)=f(-x)*f^(prime)(x) for all x ,

If the function / satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AAx , y in R and f(0)!=0 , then (a) f(x) is an even function (b) f(x) is an odd function (c) If f(2)=a ,then f(-2)=a (d) If f(4)=b ,then f(-4)=-b

A Function f(x) satisfies the relation f(x)=e^x+int_0^1e^xf(t)dtdot Then (a) f(0) 0

Statement 1: If differentiable function f(x) satisfies the relation f(x)+f(x-2)=0AAx in R , and if ((d/(dx)f(x)))_(x=a)=b ,t h e n((d/(dx)f(x)))_(a+4000)=bdot Statement 2: f(x) is a periodic function with period 4.

y=f(x), where f satisfies the relation f(x+y)=2f(x)+xf(y)+ysqrt(f(x)) , AAx,y->R and f'(0)=0.Then f(6)is equal ______

A continuous function f(x) satisfies the relation f(x)=e^x+int_0^1 e^xf(t)dt then f(1)=

A function f: R -> R satisfy the equation f (x)f(y) - f (xy)= x+y for all x, y in R and f(y) > 0 , then

Consider the function f(x) satisfying the identity f(x) +f((x-1)/(x))=1+x AA x in R -{0,1}, and g(x)=2f(x)-x+1. The domain of y=sqrt(g(x)) is

Find function f(x) which is differentiable and satisfy the relation f(x+y)=f(x)+f(y)+(e^(x)-1)(e^(y)-1)AA x, y in R, and f'(0)=2.

Consider the function f(x) satisfyig the identity f(x)+f((x-1)/x)=1+x, AA x in R-{0,1} and g(x)=2f(x)-x+1