Home
Class 12
MATHS
[x sin^(2)((y)/(x)) - y] dx + x dy = 0, ...

`[x sin^(2)((y)/(x)) - y] dx + x dy = 0, y = (pi)/(4)` when x = 1

Text Solution

Verified by Experts

The correct Answer is:
`cot(y/x)=log_(e)|ex|`

`[xsin^(2)(y/x)-y]dx+xdy=0`
or `(dy)/(dx)=v+(xdv)/(dx)`
Therefore, given equation reduces to
`v+x(dv)/(dx)=v-sin^(2)v`
or `x(dv)/(dx) = -sin^(2)v`
or `"cosec "^(2)vdv=-(dx)/(x)`
Integrating both sides, we get
`-cotv=-log|x|-logC`
or `cot(y/x)=log|Cx|`...............(2)
Now, `y=pi/4` at `x=1`.
`therefore cot(pi/4) = log|C|`
or `1=log C`
or C=e
Substituting C=e in equation (2), we get
`cot(y/x)=log|ex|`
This is the required solution of the given differential equation
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.5|7 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.6|7 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.3|9 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Numerical Value Type|3 Videos

Similar Questions

Explore conceptually related problems

(x - y)dy - (x + y) dx = 0

(dy)/(dx) = 3y cot x = sin 2x, y = 2 when x = (pi)/(2)

(dy)/(dx) = y tan x, y = 1 when x = 0

x^(2)dy+(xy + y^(2))dx = 0, y = 1 when x = 1

y dx + (x - y^(2))dy = 0

(dy)/(dx) + 2y tan x = sin x

(x + 3y^(2))(dy)/(dx) = y ( y rt 0) .

x(dy)/(dx) - y + x sin ((y)/(x)) = 0

{ xcos ((y)/(x)) + y sin ((y)/(x))} y dx = { y sin ((y)/(x)) - x cos ((y)/(x))}x dy

x(x^(2) - 1)(dy)/(dx) = 1, y = 0 when x = 2.