Home
Class 12
MATHS
(dy)/(dx) = (2xy)/(x^(2)-1-2y)...

`(dy)/(dx) = (2xy)/(x^(2)-1-2y)`

Text Solution

Verified by Experts

The correct Answer is:
`x^(2)/2=1/y-2log_(e)y+c`

`(dy)/(dx) = (2xy)/(x^(2)-1-2y)`
or `x^(2)dy-(1-2y)dy=2xydx`
or `2xydx-x^(2)dy=-(1+2y)dy`
or `(yd(x^(2))-x^(2)dy)/(y^(2))-(1/y^(2)+2/y)dy`
or `d(x^(2)/y)=-(1/y^(2)+2/y)dy`
Integrating, we get `x^(2)/y=1/y-2logy=c`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.6|7 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.7|5 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.4|6 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Numerical Value Type|3 Videos

Similar Questions

Explore conceptually related problems

(dy)/(dx) = (x^(2)+y^(2))/(xy)

If x=logp and y=1/p ,then (a) (d^2y)/(dx^2)-2p=0 (b) (d^2y)/(dx^2)+y=0 (c) (d^2y)/(dx^2)+(dy)/(dx)=0 (d) (d^2y)/(dx^2)-(dy)/(dx)=0

Solve (dy)/(dx)=((x+y)^2)/((x+2)(y-2))

x^(2)(dy)/(dx) = x^(2) - 2y^(2) + xy

Find the solution of differential equation x^(2)=1 + (x/y)^(-1) (dy)/(dx) + ((x/y)^(-2)((dy)/(dx))^(2))/(2!)+.....

The family of curves represented by (dy)/(dx)=(x^(2)+x+1)/(y^(2)+y+1) and the family represented by (dy)/(dx)+(y^(2)+y+1)/(x^(2)+x+1)=0

If y=xlog(x/(a+b x)),t h e nx^3(d^2y)/(dx^2)= (a) (x(dy)/(dx)-y) ^2 (b) x (dy/dx)-y (c) y(dy/dx)-x (d) (y(dy/dx)-x)^2

For each of the differential equations given in find a particular solution satisfying the given condition : (1+x^(2))(dy)/(dx)+2xy=(1)/(1+x^(2)), y=0 when x=1