Home
Class 12
MATHS
y(x^(2)y+e^(x))dx-e^(x)dy=0...

`y(x^(2)y+e^(x))dx-e^(x)dy=0`

Text Solution

Verified by Experts

The correct Answer is:
`x^(3)y+3e^(x)=cy`

`y(x^(2)y+e^(x))dx-e^(x)dy=0`
or `ye^(x)dx-e^(x)dy+x^(2)y^(2)dx=0`
or `(ye^(x)dx-e^(x)dy)/(y^(2))+x^(2)dx=0`
`d(e^(x)y)+x^(2)dx=0`
Integrating, we get
`e^(x)/y+x^(3)/3=k`
or `x^(3)y+3e^(x)=3ky`
or `x^(3)y+3e^(x)=Cy`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.6|7 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.7|5 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.4|6 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Numerical Value Type|3 Videos

Similar Questions

Explore conceptually related problems

For each of the differential equations in (e^(x)+e^(-x))dy-(e^(x)-e^(-x))dx=0

Solve : (1+e^(2x))dy+(1+y^(2))e^(x)dx=0 when y(0)=1

If y= e^(a cos^(-1)x), -1 le x le 1 , show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0 .

Find the particular solution of the differential equation (1+e^(2x))dy+(1+y^(2))e^(x)dx=0. Given that y=1 when x=0.

Let y(x) be a function satisfying (d^(2)y)/(dx^(2))-(dy)/(dx)+e^(2x)=0 , y(0)= and y^(')(0)=1 . If maximum value of y(x) is y(alpha) , then integral part of 2alpha is……………..

Find the solution of y e^(-x/y)dx-(x e^((-x/y))+y^3)dy=0 is

Solve the differential equation y e^(x)/(y) dx = (x e^(x)/(y) + y^(2))dy ( y ne 0) .

e^(x) tan y dx + (1 - e^(x))sec^(2)y dy = 0

Solve e^(x)sqrt(1-y^(2))dx+(y)/(x)dy=0

Solve (1+2e^(x//y))dx+2e^(x//y)(1-(x)/(y))dy=0