Home
Class 12
MATHS
Let f be a function defined on the inter...

Let f be a function defined on the interval `[0,2pi]` such that `int_(0)^(x)(f^(')(t)-sin2t)dt=int_(x)^(0)f(t)tantdt` and `f(0)=1`. Then the maximum value of `f(x)`is…………………..

Text Solution

Verified by Experts

The correct Answer is:
`1.125`

We have
`int_(0)^(x) (f^(')(t)-sin2t)dt=int_(x)^(0)f(t)tantdt`
Differentiate w.r.t. x, we get
`f^(')(x)-sin2x=0-f(x)tanx`
or `y^(')+ytanx=sin2x`, where `y=f(x)`
Above is a linear differential equation.
`I.F. =e^(inttanxdx)=secx`
Therefore, solution is
`ysecx=int2sinxdx`
or `ysecx=-2cosx+c`
or `y=cosx-2cos^(2)x`
`f(0)=1 rArr c=3`
`therefore f(x)=3cosx-2cos^(2)x`
`=-2[cosx-3/4]^(2)+9/8`
`therefore f(x)"max"=9/8`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise JEE Main Previous Year|12 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise JEE Advanced Previous Year|12 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Matrix Match Type|3 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Numerical Value Type|3 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(x) f(t)dt=x^2+int_(x)^(1) t^2f(t)dt , then f'(1/2) is

If int_(0)^(x) f ( t) dt = x + int_(x)^(1) tf (t) dt , then the value of f(1) is

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

If int_(0)^(x)f(x)sint dt=" constant, " 0 lt x lt 2pi and f(pi)=2 , then the value of f(pi//2) is

If f'(x)=f(x)+int_(0)^(1)f(x)dx ,given f(0)=1 , then the value of f(log_(e)2) is

Let f be a continuous function satisfying the equation int_(0)^(x)f(t)dt+int_(0)^(x)tf(x-t)dt=e^(-x)-1 , then find the value of e^(9)f(9) is equal to…………………..

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . y=f(x) is

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

f is a real valued function from R to R such that f(x)+f(-x)=2 , then int_(1-x)^(1+X)f^(-1)(t)dt=