Home
Class 12
MATHS
Let y(x) be a function satisfying (d^(2)...

Let `y(x)` be a function satisfying `(d^(2)y)/(dx^(2))-(dy)/(dx)+e^(2x)=0`, y(0)= and `y^(')(0)=1`. If maximum value of `y(x)` is `y(alpha)`, then integral part of `2alpha` is……………..

Text Solution

Verified by Experts

The correct Answer is:
1

We have `(d^(2)y)/(dx^(2))-(dy)/(dx)+e^(2x)=0`
Put `(dy)/(dx)=t`
`therefore (dt)/(dx) -t=-e^(2x)`, which is linear differential equation
`rArr` solution is `te^(-x)=-inte^(2x)e^(-x)dx+c`
`rArr (dy)/(dx) e^(-x)=-e^(x)+c`
`rArr y^(')(0)=1 rArr c=2`
`therefore y=2e^(x)-e^(2x)/2+c^(')`
`therefore y(x) = 2e^(x)- e^(2x)/2+1/2`
`y(x) le5/2` for `x=log_(2)2`
So, `[2alpha]=[log_(e)4]=1`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise JEE Main Previous Year|12 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise JEE Advanced Previous Year|12 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Matrix Match Type|3 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Numerical Value Type|3 Videos

Similar Questions

Explore conceptually related problems

(1+x+xy^(2))(dy)/(dx)+(y+y^(3))=0

x(dy)/(dx)+2y-x^(2)logx=0

y(x^(2)y+e^(x))dx-e^(x)dy=0

(x + 3y^(2))(dy)/(dx) = y ( y rt 0) .

(dy)/(dx) = e^(2x-y) + x^(3) e^(-y)

If y= 3e^(2x)+2e^(3x) , prove that (d^(2)y)/(dx^(2))-5(dy)/(dx)+6y=0 .

If y =sin (sin x) and (d^(2)y)/(dx^(2))+(dy)/(dx) tan x + f(x) = 0, then find f(x).

If y=(cos^(-1)x)^(2) prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-2=0

If y= sin^(-1)x , show that (1-x^(2)) (d^(2)y)/(dx^(2))-x(dy)/(dx)0 .

If y = Ae^(6x) +Be^(-x) prove that (d^(2)y)/(dx^(2)) - 5 (dy)/(dx) - 6y = 0