Home
Class 12
MATHS
Let f be a continuous function satisfyin...

Let f be a continuous function satisfying the equation `int_(0)^(x)f(t)dt+int_(0)^(x)tf(x-t)dt=e^(-x)-1`, then find the value of `e^(9)f(9)` is equal to…………………..

Text Solution

Verified by Experts

The correct Answer is:
8

`int_(0)^(x)f(t)dt+int_(0)^(x)tf(x-t)dt=e^(-x)-1`
`rArr int_(0)^(x) f(t)dt+int_(0)^(x)(x-t)f(t)dt=e^(-x)-1`
`rArr int_(0)^(x)f(t)dt +int_(0)^(x)tf(t)dt=e^(-x)-1`
Differentiate w.r.t. x, we get
`f(x) + xf(x) + int_(0)^(x)f(t)dt-xf(x)=-e^(-x)`...........(1)
`rArr f(x) + int_(0)^(x)f(t)dt=-e^(-x)`
Again differentiate w.r.t x., we get
`rArr f^(')(x) + f(x)=e^(-x)`
`rArr e^(x)f^(')(x)+e^(x)f(x)=1`
`rArr (e^(x)f(x))^(')=1`
`rArr e^(x)f(x)=x+c`
From (1), `f(0)=-1, therefore c=-1`
`therefore f(x)e^(x)=x-1`
`therefore e^(9)f(9)=8`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise JEE Main Previous Year|12 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise JEE Advanced Previous Year|12 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Matrix Match Type|3 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Numerical Value Type|3 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(x) f ( t) dt = x + int_(x)^(1) tf (t) dt , then the value of f(1) is

A continuous function f(x) satisfies the relation f(x)=e^x+int_0^1 e^xf(t)dt then f(1)=

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

If int_(0)^(x) f(t)dt=x^2+int_(x)^(1) t^2f(t)dt , then f'(1/2) is

If f'(x)=f(x)+int_(0)^(1)f(x)dx ,given f(0)=1 , then the value of f(log_(e)2) is

A continuous real function f satisfies f(2x)=3(f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

A continuous real function f satisfies f(2x)=3(f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of lim_(x to 0)(cosx)/(f(x)) is equal to where [.] denotes greatest integer function