Home
Class 12
MATHS
Let the population of rabbits survivi...

Let the population of rabbits surviving at a time t be governed by the differential equation `(d p(t)/(dt)=1/2p(t)-200.` If `p(0)""=""100` , then p(t) equals (1) `400-300""e^(t//2)` (2) `300-200""e^(-t//2)` (3) `600-500""e^(t//2)` (4) `400-300""e^(-t//2)`

A

`40-300e^(t//2)`

B

`200-200e^(-t//2)`

C

`600-500e^(t//2)`

D

`400-300e^(-t//2)`

Text Solution

Verified by Experts

The correct Answer is:
A

`(dp)/(dt) = (p-400)/(2)`
`rArr (dp)/(p-400)=1/2dt`
Integrating, we get
`"ln "|p-400|=1/2t+c`
When `t=0, p=100`, we have ln 300=c
`therefore "ln"|(p-400)/(300)|=t/2`
`rArr |p-400|=300e^(t//2)`
`rArr 400-p=300e^(t//2)` (as `p lt 400)`
`rArr p=400-300e^(t//2)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise JEE Advanced Previous Year|12 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Single Correct Answer Type|37 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise (Numerical)|15 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Numerical Value Type|3 Videos

Similar Questions

Explore conceptually related problems

If y(t) satisfies the differential equation y'(t)+2y(t)=2e^(-2t),y(0)=2 then y(1) equals

The population p(t) at time t of a certain mouse species satisfies the differential equation (d p(t)/(dt)=0. 5 p(t)-450 If p(0)""=""850 , then the time at which the population becomes zero is (1) 2 ln 18 (2) ln 9 (3) 1/2 In 18 (4) ln 18

Differentiate the following : h(t)=(t-1/t)^(3/2)

Let y=y(t) be a solution to the differential equation y^(prime)+2t y=t^2, then 16 ("lim")_(tvecoo)y/t is_______

Let y=y(t) be a solution to the differential equation y^(')+2ty=t^(2) , then 16 lim_(t to infty t) y/t is……………….

Differentiate the following : h(t) = (t - (1)/(t) )^(3//2)

Integrate the functions e^(t)((1)/(t)-(1)/(t^(2)))

Let I be the purchase value of an equipment and V(t) be the value after it has been used for t years. The value V(t) depreciates at a rate given by differential equation (d V(t)/(dt)=-k(T-t) , where k"">""0 is a constant and T is the total life in years of the equipment. Then the scrap value V(T) of the equipment is : (1) T^2-1/k (2) I-(k T^2)/2 (3) I-(k(T-t)^2)/2 (4) e^(-k T)