Home
Class 12
MATHS
The function y=f(x) is the solution o...

The function `y=f(x)` is the solution of the differential equation `(dy)/(dx)+(x y)/(x^2-1)=(x^4+2x)/(sqrt(1-x^2))` in `(-1,1)` satisfying `f(0)=0.` Then `int_((sqrt(3))/2)^((sqrt(3))/2)f(x)dx` is (a) `( b ) (c) (d)pi/( e )3( f ) (g)-( h )(( i )sqrt(( j )3( k ))( l ))/( m )2( n ) (o) (p)` (q) (b) `( r ) (s) (t)pi/( u )3( v ) (w)-( x )(( y )sqrt(( z )3( a a ))( b b ))/( c c )4( d d ) (ee) (ff)` (gg) (c) `( d ) (e) (f)pi/( g )6( h ) (i)-( j )(( k )sqrt(( l )3( m ))( n ))/( o )4( p ) (q) (r)` (s) (d) `( t ) (u) (v)pi/( w )6( x ) (y)-( z )(( a a )sqrt(( b b )3( c c ))( d d ))/( e e )2( f f ) (gg) (hh)` (ii)

A

`pi/3-sqrt(3)/2`

B

`pi/3-sqrt(3)/4`

C

`pi/6-sqrt(3)/4`

D

`pi/6-sqrt(3)/2`

Text Solution

Verified by Experts

The correct Answer is:
B

`(dy)/(dx) + x/(x^(2)-1)y=(x^(4)+2x)/sqrt(1-x^(2))`
This is a linear differential equation.
`I.F. =e^(intx/(x^(2)-1)dx)`
`e^(1/2"ln "|x^(2)-1|)=sqrt(1-x^(2))` (`therefore x in (-1,1))`
Therefore, solution is:
`ysqrt(1-x^(2))=int(x(x^(3)+2))/sqrt(1-x^(2)).sqrt(1-x^(2))dx`
or `ysqrt(1-x^(2))=int(x^(4)+2x)dx=x^(5)/5+x^(2)+C`
Since, `f(0)=0,C=0`
`therefore f(x) sqrt(1-x^(2))=x^(5)/5+x^(2)`
`rArr f(x) = x^(5)/(5sqrt(1-x^(2))+x^(2)/sqrt(1-x^(2))`
`therefore int_(-sqrt(3//2))^(sqrt(3)/2) f(x)dx= int_(sqrt(3)/2)^(sqrt(3)/2) (x^(5)/(5sqrt(1-x^(2))+x^(2)/sqrt(1-x^(2))))dx`
`=2int_(0)^(sqrt(3)//2)(x^(2)/sqrt(1-x^(2)))dx`
`rArr 2int_(0)^(pi//3) sin^(2)theta(d)theta`
`=2int_(0)^(pi//3)(1-cos2theta)/(2)(d)theta`
`=2[theta/2-(sin2theta)/4]_(0)^(pi//3)`
`=2(pi/6) -2(sqrt(3))/8 = pi/3-sqrt(3)/4`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Single Correct Answer Type|37 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Multiple Correct Answer Type|10 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise JEE Main Previous Year|12 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Numerical Value Type|3 Videos

Similar Questions

Explore conceptually related problems

The equation of a curve passing through (1,0) for which the product of the abscissa of a point P and the intercept made by a normal at P on the x-axis equal twice the square of the radius vector of the point P is (a) ( b ) (c) (d) x^(( e )2( f ))( g )+( h ) y^(( i )2( j ))( k )=( l ) x^(( m )4( n ))( o ) (p) (q) (b) ( r ) (s) (t) x^(( u )2( v ))( w )+( x ) y^(( y )2( z ))( a a )=2( b b ) x^(( c c )4( d d ))( e e ) (ff) (gg) (c) ( d ) (e) (f) x^(( g )2( h ))( i )+( j ) y^(( k )2( l ))( m )=4( n ) x^(( o )4( p ))( q ) (r) (s) (d) None of these

Differentiate y = (x^(3/4) sqrt(x^2 + 1))/((3x+2)^5) .

int_(-1)^(1/2)(e^x(2-x^2)dx)/((1-x)sqrt(1-x^2))i se q u a lto (sqrt(e))/2(sqrt(3)+1) (b) (sqrt(3e))/2 sqrt(3e) (d) sqrt(e/3)

The sum of the solution of the equation 2sin^(-1)sqrt(x^2+x+1)+cos^(-1)sqrt(x^2+x)=(3pi)/2 is (a)0 (b) -1 (c) 1 (d) 2

If f(x)=3sqrt(1−x^2)​+3sqrt(1−x^2)​, then f(x) is

The degree of the differential equation satisfying sqrt(1-x^2)+sqrt(1-y^2)=a(x-y) is (a) 1 (b) 2 (c) 3 (d) none of these

"F i n d"(dy)/(dx)"if"y=tan^(-1)((sqrt(1+x^2)-1)/x), where x!=0

Let f(x)=int x^2/((1+x^2)(1+sqrt(1+x^2)))dx and f(0)=0 then f(1) is

Let f: RvecR be a continuous and differentiable function such that (f(x^2+1))^(sqrt(x))=5forAAx in (0,oo), then the value of (f((16+y^2)/(y^2)))^(4/(sqrt(y)))fore a c hy in (0,oo) is equal to (a) 5 (b) 25 (c) 125 (d) 625