Home
Class 12
MATHS
Let L(1)=lim(xrarr4) (x-6)^(x)and L(2)=l...

Let `L_(1)=lim_(xrarr4) (x-6)^(x)and L_(2)=lim_(xrarr4) (x-6)^(4)`.
Which of the following is true?

A

Both `L_(1) and L_(2)` exists

B

Neither `L_(1)` nor `L_(2)` exists

C

`L_(1)` exists but `L_(2)` does not exist

D

`L_(2)` exists but `L_(1)` does not exist

Text Solution

Verified by Experts

The correct Answer is:
D

If `("variable")^("variable")` and base is negative then limit does not exist. And `underset(xrarr4)(lim)(x-6)^(4)=16`.
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Multiple Correct Answers Type|4 Videos
  • LIMITS

    CENGAGE|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE|Exercise JEE Advanced Previous Year|7 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Let L_1=(lim)_(xvec4)(x-6)^x n dL_2=(lim)_(xvec4)(x-6)^4dot Which of the following is true? Both L_1a n dL_2 exists Neither L_1a n dL_2 exists L_1 exists but L_2 does not exist L_2 exists but L_1 does not exist

Evaluate lim_(xrarr3)1/(x-3)^2

lim_(xrarr0)[xe^(2x) +tanx]/x is :

Find (a) lim_(xrarr0)tanx/|x|

Calculate (i) lim_(xrarr1) (4x+1)

Evaluate : lim_(xrarr0)(tanx)/(x)

lim_(xrarr(pi)/(2)) (1-sinx)tanx=

Find lim_(xrarr0)(xe^x -sin2x)/(2x)

Evaluate: lim_(xrarr0)x^x

lim_(xrarr0)(xe^x -sin2x)/x is :

CENGAGE-LIMITS-Single Correct Answer Type
  1. lim(xrarr-7) ([x]^(2)+15[x]+56)/(sin(x+7)sin(x+8))= (where [.] denote...

    Text Solution

    |

  2. Which of the following limits exists finitely?

    Text Solution

    |

  3. Let L(1)=lim(xrarr4) (x-6)^(x)and L(2)=lim(xrarr4) (x-6)^(4). Which ...

    Text Solution

    |

  4. Set of all values of x such that lim(nrarroo) (1)/(1+((4tan^(-1)(2pix)...

    Text Solution

    |

  5. lim(xrarroo) [x-log(e)((e^(x)+e^(-x))/(2))]=

    Text Solution

    |

  6. lim(xrarroo) {(e^(x)+pi^(x))^((1)/(x))}= (where {.} denotes the fracti...

    Text Solution

    |

  7. If (cos x)/(sin ax) is periodic function, then lim(mrarroo)(1+cos^(2...

    Text Solution

    |

  8. The value of lim(xrarr0) (sqrt(1-cosx^(2)))/(1-cos x) is

    Text Solution

    |

  9. lim(xrarr(pi)/(2)) (1-sinx)tanx=

    Text Solution

    |

  10. The value of lim(xrarroo) x^(2)(1-cos.(1)/(x)) is

    Text Solution

    |

  11. lim(xrarroo) root3(x)(root3((x+1)^(2))-root3((x-1)^(2)))=

    Text Solution

    |

  12. lim(nrarroo) (3.2^(n+1)-4.5^(n+1))/(5.2^(n)+7.5^(n))=

    Text Solution

    |

  13. underset(xrarr2^(+))(lim){x}(sin(x-2))/((x-2)^(2))= (where {.} denotes...

    Text Solution

    |

  14. lim(xrarroo) (cot^(-1)(sqrt(x+1)+sqrtx))/(sec^(-1){((2x+1)/(x-1))^(x)}...

    Text Solution

    |

  15. lim(xrarr0) (3 tan3x-4 tan2x-tanx)/(4x^(2)tanx)

    Text Solution

    |

  16. lim(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest...

    Text Solution

    |

  17. The value of lim(xrarr(pi)/(4)) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

    Text Solution

    |

  18. The value of lim(xrarroo) (e^(sqrt(x^(4)+))-e^((x^(2)+1))) is

    Text Solution

    |

  19. The value of lim(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

    Text Solution

    |

  20. lim(xrarr(pi)/(2)) ((1-sinx)(8x^(3)-pi^(3))(cosx))/(pi-2x)^(4)

    Text Solution

    |