Home
Class 12
MATHS
Let f(x)=lim(nrarroo) (tan^(-1)(tanx))/(...

Let `f(x)=lim_(nrarroo) (tan^(-1)(tanx))/(1+(log_(x)x)^(n)),x ne(2n+1)(pi)/(2)` then

A

`AA1ltxlt(pi)/(2),f(x)` is an identity function

B

`AA(pi)/(2)ltxltpi,` the graph of f(x) is a straight line having y intercept of `-pi`

C

`AA(pi)/(2)ltxlte`, the graph of f(x) is a straight line having y intercept of `-pi`

D

`AAxgte, f(x)` is a constant function

Text Solution

Verified by Experts

The correct Answer is:
A, C, D

`AA1 ltx lt(pi)/(2), tan^(-1)tanx=x`
`and 0 lt log_(e)lt log_(e).(pi)/(2)lt1`
`rArr" "f(x)=x`
`AA(pi)/(2)ltx lte, tan^(-1)tanx=x-pi`
and `0lt log_(e)xlt1`
`therefore" "(log_(e)x)^(n)=0`
`rArr" "f(x)=x-pi`
and for `x gt e, log_(e)xlt1, therefore (log_(e)x)^(n)rarroo`
`rArr" "f(x)=0`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE|Exercise Multiple Correct Answer Type|2 Videos
  • LIMITS

    CENGAGE|Exercise Single Correct Answer Type|59 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=lim_(nrarroo) sum_(r=0)^(n-1)(x)/((rx+1){(r+1)x+1}) . Then

Let f(x)=lim_(ntooo) (x)/(x^(2n)+1). Then

Let the given function is differentiable at x = 1. f(x)={{:(lim_(nrarroo) (ax(x-1)(cot.(pix)/(4))^(n)+(px^(2)+2))/((cot,(pix)/(4))^(n)+1)",",x in(0,1)uu(1,2)),(0",",x=1):} Then the value of |a+q| is

lim_(nrarroo) (3.2^(n+1)-4.5^(n+1))/(5.2^(n)+7.5^(n))=

lim_(xrarr0) (3 tan3x-4 tan2x-tanx)/(4x^(2)tanx)

The value of lim_(nrarroo) ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1) is

Let f(x)={lim_(n->oo)(a x(x-1)(cot(pix)/4)^n+(p x^2+2))/((cot(pix)/4)^n+1) ,x in (0,1) uu (1,2) and 0 ,x=1 If f(x) is differentiable for all x in (0, 2) then (a^2 +p^2) equals

If f(a)=lim_(xto2)(sin^(x)a+cos^(x)a)^((1)/((x-2)))" for "ain[0,(pi)/(2)], then

lim_(nrarroo) (1-x+x.root n e)^(n) is equal to

The value of (lim_(x rarr 0) (tanx^((1)/(5)))/((tan^(-1)sqrtx)^(2))(log(1+5x))/(e^(3root5x)-1) is