Home
Class 12
MATHS
Let f(x) be defined for all x in R such ...

Let f(x) be defined for all `x in R` such that `lim_(xrarr0) [f(x)+log(1-(1)/(e^(f(x))))-log(f(x))]=0`. Then f(0) is

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
A

`underset(xrarr0)(lim)[f(x)+log(1-(1)/(e^(f(x))))-log(f(x))]=0`
`rArr" "underset(xrarr0)(lim)[f(x)+log((e^(f(x))-1)/(e^(f(x))))-log(f(x))]=0`
`rArr" "underset(xrarr0)(lim)[f(x)+log((e^(f(x))-1)/(f(x)))-f(x)]=0`
`rArr" "log(underset(xrarr0)(lim)((e^(f(x))-1)/(f(x))))=0`
`rArr" "underset(xrarr0)(lim)((e^(f(x))-1)/(f(x)))=1`
`rArr" "underset(xrarr0)(lim)f(x)=0`
`rArr" "f(0)=0`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Multiple Correct Answers Type|4 Videos
  • LIMITS

    CENGAGE|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE|Exercise JEE Advanced Previous Year|7 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Find lim_(xrarr0)[log(1+x) -x]/x

Let f(x) be defined for all x > 0 and be continuous. Let f(x) satisfy f((4x)/y)=f(x)-f(y) for all x,y and f(4e) = 1, then (a) f(x) = In 4x(b) f(x) is bounded (c) lim_(x->0) f(1/x)=0 (d) lim_(x->0)xf(x)=0

If f(x)=log_(e)(log_(e)x)/log_(e)x then f'(x) at x = e is

Let f(x) be defined for all x > 0 and be continuous. Let f(x) satisfies f(x/y)=f(x)-f(y) for all x,y and f(e)=1. Then

If graph of the function y=f(x) is continuous and passes through point (3, 1) then lim_(xrarr3) (log_(e)(3f(x)-2))/(2(1-f(x))) is equal

Evaluate: underset(xrarr0)lim((log(1-x))/((x)))

Let the function be defined as f(x)={4x 0ltxle1 (-4x+5) 1ltxlt2 then lim_(xrarr1)f(x) is :

Let f(x) be a twice-differentiable function and f''(0)=2. Then evaluate lim_(xto0) (2f(x)-3f(2x)+f(4x))/(x^(2)).

If f(x) is twice differentiable and f^('')(0) = 3 , then lim_(x rarr 0) (2f(x)-3f(2x)+f(4x))/x^(2) is

If f(x)=lim_(nrarroo) (cos(x)/(sqrtn))^(n) , then the value of lim_(xrarr0) (f(x)-1)/(x) is

CENGAGE-LIMITS-Single Correct Answer Type
  1. lim(xrarr0) (1)/(x^(2))|(1-cos3x,log(e)(1+4x)),(sin^(-1)(x^(x)-),tan^(...

    Text Solution

    |

  2. If graph of the function y=f(x) is continuous and passes through point...

    Text Solution

    |

  3. Let f(x) be defined for all x in R such that lim(xrarr0) [f(x)+log(1-(...

    Text Solution

    |

  4. lim(xrarroo) x^(2)sin(log(e)sqrt(cos(pi)/(x)))

    Text Solution

    |

  5. If lim(xrarroo) ((x+c)/(x-c))^(x)=4 then the value of e^(c) is

    Text Solution

    |

  6. If ("lim")(xvec0)[1+x+(f(x))/x]^(1/x)=e^3, then find the value of 1n((...

    Text Solution

    |

  7. lim(xrarr(pi^(-))/(2)) [1+(cosx)^(cosx)]^(2)=

    Text Solution

    |

  8. If agt0, b gt0 than lim(nrarroo) ((a-1+b^((1)/(n)))/(a))^(n)=

    Text Solution

    |

  9. If f(x)=lim(nrarroo) (cos(x)/(sqrtn))^(n), then the value of lim(xrarr...

    Text Solution

    |

  10. lim(xrarr0) (log(x^(x^(2))+2sqrtx))/(tansqrtx) is equal to

    Text Solution

    |

  11. Let f:RrarrR be such that f(a)=1, f(a)=2. Then lim(x to 0)((f^(2)(a+x)...

    Text Solution

    |

  12. The value of lim(nrarroo) ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1) is

    Text Solution

    |

  13. If f(n)=("lim")(xvec0)"{"(1+s in x/2)(1+s in x/(x^2))(1+s in x/(x^n))"...

    Text Solution

    |

  14. lim(nrarroo) (1-x+x.root n e)^(n) is equal to

    Text Solution

    |

  15. underset(xrarr1)(lim)(root(13)x-root7x)/(root5x-root3x) is

    Text Solution

    |

  16. lim(xrarr1) (root(13)x-root7x)/(root5x-root3x) is

    Text Solution

    |

  17. The value of lim(x rarr 0) (1-cos2x)/(e^(x^(2))-e^(x)+x) is

    Text Solution

    |

  18. If f(a)=(1)/(4), then lim(hrarr0) (f(a+2h^(2))-f(a-2h^(2)))/(f(a+h^(3)...

    Text Solution

    |

  19. (lim)(xvec0^+)1/(xsqrt(x))("a t a n"^(-1)(sqrt(x))/a-btan^(-1)(sqrt(x)...

    Text Solution

    |

  20. The value of lim(xrarr0) ((1+2x)/(1+3x))^((1)/(x^(2))).e^((1)/(e^(x)))...

    Text Solution

    |