Home
Class 12
MATHS
Let f(x) be the fourth degree polynomial...

Let `f(x)` be the fourth degree polynomial such that `f^(prime)(0)-6,f(0)=2a n d(lim)_(xvec1)(f(x))/((x-1)^2)=1` The value of `f(2)` is `3` b. 1 c. `0` d.`2`

A

4

B

5

C

6

D

7

Text Solution

Verified by Experts

The correct Answer is:
C

Since `underset(xrarr1)(lim)(f(x))/((x-1)^(2))=1,f(1)=0`
`therefore" "underset(xrarr1)(lim)(f(x))/((x-1)^(2))=underset(xrarr1)(lim)(f'(x))/(2(x-1))=1`
`rArr" "f'(1)=0`
`therefore" "underset(xrarr1)(lim)(f''(x))/(2)=1rArrf''(1)=2`
Since x = 1 is root of f(x) = 0 and `f'(x) = 0.`
`f(x)=(x-1)^(2)(ax^(2)+bx+2)" "(because f(0)=2)`
`rArr" "f'(x)=2(x-1)(ax^(2)+bx+2)+(2ax+b)(x-1)^(2)`
`because" "f'(0)=-6rArr b=-2`
Using f''(1)= 2, we get `a+b=-1 rArr a=1`
`rArr" "f(x)=(x-1)^(2)(x^(2)-2x+2)`
`rArr" "f(x)=(x-1)^(4)+(x-1)^(2)`
`rArr" "f(2)=1+1=2`
`"Also, "f'(x)=4(x-1)^(3)+2(x-1)`
`rArr" "f'(2)=4+2=6`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Multiple Correct Answer Type|2 Videos
  • LIMITS

    CENGAGE|Exercise Comprehension Type|4 Videos
  • LIMITS

    CENGAGE|Exercise Multiple Correct Answers Type|4 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be the fourth degree polynomial such that f^(prime)(0)=-6,f(0)=2 and (lim)_(x->1)(f(x))/((x-1)^2)=1 The value of f(2) is a. 3 b. 1 c. 0 d. 2

Let f(x) be differentiable for real x such that f^(prime)(x)>0on(-oo,-4), f^(prime)(x) 0on(6,oo), If g(x)=f(10-2x), then the value of g^(prime)(2) is a. 1 b. 2 c. 0 d. 4

Let f(x) be a polynomial of degree 3 such that f(3)=1,f^(prime)(3)=-1,f^('')(3)=0,a n df^(''')(3)=12. Then the value of f^(prime)(1) is (a) 12 (b) 23 (c) -13 (d) none of these

Let g^(prime)(x)>0a n df^(prime)(x) g(f(x-1)) f(g(x+1))>f(g(x-1)) g(f(x+1))

Let f:RrarrR be such that f(a)=1, f(a)=2 . Then lim_(x to 0)((f^(2)(a+x))/(f(a)))^(1//x) is

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

Let f(x) be a polynomial satisfying lim_(xtooo) (x^(2)f(x))/(2x^(5)+3)=6" and "f(1)=3,f(3)=7" and "f(5)=11. Then The value of f(0) is

Suppose |[f'(x),f(x)],[f''(x),f'(x)]|=0 is continuously differentiable function with f^(prime)(x)!=0 and satisfies f(0)=1 and f'(0)=2 then (lim)_(x->0)(f(x)-1)/x is 1//2 b. 1 c. 2 d. 0

Let f: R->R be such that f(1)=3a n df^(prime)(1)=6. Then lim_(x->0)((f(1+x))/(f(1)))^(1//x)= (a) 1 (b) e^(1/2) (c) e^2 (d) e^3