Home
Class 12
MATHS
Consider two function y=f(x) and y=g(x) ...

Consider two function `y=f(x) and y=g(x)` defined as
`f(x)={{:(ax^(2)+b,,0lexle1),(bx+2b,,1ltxle3),((a-1)x+2c-3,,3ltxle4):}`
`and" "g(x)={{:(cx+d,,0lexle2),(ax+3-c,,2ltxlt3),(x^(2)+b+1,,3gexle4):}`
`lim_(xrarr2) (f(x))/(|g(x)|+1)` exists and f is differentiable at x = 1. The value of limit will be

A

`-2`

B

`-1`

C

0

D

2

Text Solution

Verified by Experts

The correct Answer is:
C

Given two functions : `f(X)={{:(ax^(2)+b,,0lexle1),(bx+2b,, 1ltxle3),((a-1)x+2x-3,,3ltxle4):}`
and `g(x)={{:(cx+d,, 0le xle2),(ax+3-c,,2ltxlt3),(x^(2)+b+1,,xlexle4):}`
Condition for continuity of `f(x):f(1^(-))=f(1)=f(1^(+))and f(3^(-))=f(3)=f(3^(+))`
`rArr" "a+b=3b and 5b=3a+2c-6`
`rArr" "a=2b and c=3-(b)/(2)`
condition for continuity of g(x),
`g(2)=g(2^(-))=g(2^(+))and g(3^(-))=g(3)=g(3^(+))`
`rArr" "2c+d=2a+3-c and 3a+3 -c =10+b`
`rArr" "3c+d-2a=3 and b+c -3a =-7`
Also `f'(x)={{:(2ax,,0ltxlt1),(b,,1ltxlt3),(a-1,,3ltxlt4):}andg'(x)={{:(c,,0ltxlt2),(a,,2ltxlt3),(2x,,3ltxlt4):}`
`LHL=underset(hrarr0)(lim)(f(2-h))/(|g(2-h)|+1)underset(hrarr0)(lim)(b(4-h))/(|(c(2-h)+d)|+1)`
`=(4b)/(|2c+d|+1)`
`RHL=underset(hrarr0)(lim)(f(2+h))/(|g(2+h)|+1)underset(hrarr0)(lim)(b(4+h))/(|(a(2+h)+3-c)|+1)`
`=(4b)/(|2a+3-c|+1)`
`because" f is differentiable at x = 1 i.e., a = b= 0"`
So, LHL = RHL = 0 `because` (it is given that limit exists)
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE|Exercise Question Bank|1 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE|Exercise Multiple Correct Answer Type|9 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|87 Videos
  • COORDINATE SYSTEM

    CENGAGE|Exercise Multiple Correct Answers Type|2 Videos

Similar Questions

Explore conceptually related problems

Consider two function y=f(x) and y=g(x) defined as f(x)={{:(ax^(2)+b,,0lexle1),(bx+2b,,1ltxle3),((a-1)x+2c-3,,3ltxle4):} and" "g(x)={{:(cx+d,,0lexle2),(ax+3-c,,2ltxlt3),(x^(2)+b+1,,3gexle4):} Let f be differentiable at x = 1 and g(x) be continuous at x = 3. If the roots of the quadratic equation x^(2)+(a+b+c)alphax+49(k+kalpha)=0 are real distinct for all values of alpha then possible values of k will be

If f(x)={{:(x",",0lexle1),(2-e^(x-1)",",1ltxle2),(x-e",",2ltxle3):} and g'(x)=f(x), x in [1,3] , then

Let the function f be defined f(x)={:{(3x,0lexle1),(-3x+5,1ltxle2):} then............

A function f:[-7, 6) to R is defined as follows. f(x)={(x^(2)+2x+1, -7lexlt-5), (x+5, -5lexle2), (x-1, 2ltxlt6):} Find 2f(-4)+3f(2)

Let the function f be defined by f(x)={(3x0lexle1),(-3x+51ltxle2):} , then:

Let the function f(x) be defined as follows: f(x)={x^(3)+x^(2)-10x,-1lexle0 cosx,0lexlepi//2 1+sin x, pi//2 lexlepi

If the function f is defined by f(x)={(x+2," if" xgt1), (2" if" -1lexle1 ), (x-1 " if" -3ltxlt-1):} find the values of f(3)

If the function f is defined by f(x)={(x+2," if" xgt1), (2" if" -1lexle1 ), (x-1 " if" -3ltxlt-1):} find the values of f(0)

If the function f is defined by f(x)={(x+2," if" xgt1), (2" if" -1lexle1 ), (x-1 " if" -3ltxlt-1):} find the values of f(-1.5)