Home
Class 12
MATHS
If g(x) =2f(2x^3-3x^2)+f(6x^2-4x^3-3) AA...

If `g(x) =2f(2x^3-3x^2)+f(6x^2-4x^3-3) AA x in R` and `f''(x) gt 0 AA x in R` then g(x) is increasing in the interval

A

`(-oo,-(1)/(2))uu(0,1)`

B

`(-(1)/(2),0)uu(1,oo)`

C

`(0,oo)`

D

`(-oo,1)`

Text Solution

Verified by Experts

The correct Answer is:
B

Since `f''(x)gt0`
`rArr" "f'(x)` is always increasing.
`g'(x)=2f'(2x^(3)-3x^(2))xx(6x^(2)-6x)+f'(6x^(2)-4x^(3)-3)(12x-12x^(2))`
`=12(x^(2)-4).(f'(2x^(3)-3x^(2))-f'(6x^(2)-4x^(3)-3))`
`=12x(x-1)[f'(2x^(3)-3x^(2))-f'(6x^(2)-4x^(3)-3)]`
For increasing `g'(x)gt0`
Case I
`xlt0 or xgt1 rArr f'(2x^(3)-3x^(2))gtf'(6x^(2)-4x^(3)-3)`
`" "{because f'(x)" is increasing"}`
`rArr" "(x-1)^(2)(x+(1)/(2))gt0`
`rArr" "xgt-(1)/(2) therefore in (-(1)/(2),0)uu(1,oo)`
Case II
`0ltxlt1`
`rArr" "(x-1)^(2)(x+1//2)lt0`
`rArr" "xlt-1//2`
So, no solution for this case.
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Multiple Correct Answer Type|10 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise JEE Advanced Previous Year|17 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE|Exercise Exercise (Numerical)|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = e^(x)- x and g(x) = x^(2) - x , AA x in R . Then, the set of all x in R , when the function h(x)= (fog)(x) is increasing, is

If f (x) = 2x-3 and g(x)= x^(2) +x-2 then go f(x) is

Let f'(sin x) lt 0 and f''(sin x) gt 0 AA x in (0, pi/2) and g (x) = f (sin x) + f (cos x) , then

If f(x^2-6x+6)+f(x^2-4x+4)=2x AA in x in R then f(-3) + f(9) -5f(1)= (A) 7 (B) 8 (C) 9 (D) 10

Let g(x)=(f(x))^3-3(f(x))^2+4f(x)+5x+3sinx+4cosxAAx in Rdot Then prove that g is increasing whenever is increasing.

If f''(x) gt forall in R, f(3)=0 and g(x) =f(tan^(2)x-2tanx+4y)0ltxlt(pi)/(2) ,then g(x) is increasing in

If g(x)=(x^(3) - 2x + 4) f(x) and f(0) = 3 and lim(xrarr0) (f(x)-3)/x = 2 then g'(0) is:

Let f(x) and g(x) be real valued functions such that f(x)g(x)=1, AA x in R."If "f''(x) and g''(x)" exists"AA x in R and f'(x) and g'(x) are never zero, then prove that (f''(x))/(f'(x))-(g''(x))/(g'(x))=(2f'(x))/(f(x))

If f(x)=(x^2)/(2-2cosx);g(x)=(x^2)/(6x-6sinx) where 0 < x < 1, then (A) both 'f' and 'g' are increasing functions