Home
Class 12
MATHS
Find the set of all values of the parame...

Find the set of all values of the parameter 'a' for which the function, `f(x) = sin 2x - 8(a + 1)sin x + (4a^2 + 8a - 14)x` increases for all `x in R` and has no critical points for all `a in R.`

A

a) `(-oo, -sqrt5,-2)`

B

b)`(1,oo)`

C

c) `(sqrt5,oo)`

D

d) None of these

Text Solution

Verified by Experts

The correct Answer is:
B

`f(x)=sin2x-8(a+1)sinx+(4a^(2)+8a-14)x`
`therefore" "f'(x)=2cos2x-8(a+1)cosx+4a^(2)+8a-14`
`=4cos^(2)x-2-8a cosx+4a^(2)+8a-14`
Now f(x) increase for all `x in R`
`rArr" "(cosx-(a+1))^(2)gt5`
`rArr" "cosx-(a+1)gt sqrt5 or cos x-(a+1)lt-sqrt5`
`rArr" "alt -sqrt5-1+cos x" "agt sqrt5-1+cosx`
`rArr" "alt-sqrt5-2" or" a gt sqrt5`
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Multiple Correct Answer Type|10 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise JEE Advanced Previous Year|17 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE|Exercise Exercise (Numerical)|5 Videos

Similar Questions

Explore conceptually related problems

The period of the function f(x) = | sin 2x | + | cos 8x | is

The set of all real values of x for which the funciton f(x) = sqrt(sin x + cos x )+sqrt(7x -x^(2) - 6) takes real values is

The range of the functions f(x) = (x^2 +8)/(x^2 +4) x in R is

Find sum of maximum and minimum values of the function f(x) = sin^2x + 8cosx - 7

The set of all points, where the function f (x) = x/(1+|x|) is differentiable, is

Let K be the set of all values of x, where the function f(x) = sin |x| - |x| + 2(x-pi) cos |x| is not differentiable. Then, the set K is equal to

Find the integrals of the functions sin 4x sin 8x

Find the domain of the function: f(x)=sin^(-1)(|x-1|-2)

R is the set of real number . Define the function f :R to R by f (x ) =x^2 + 3 find f(-1) and f(2)

Find the domain of the function : f(x)=sin^(-1)((log)_2x)