Home
Class 12
MATHS
if f(x) =2e^(x) -ae^(-x) +(2a +1) x-3 mo...

if f(x) `=2e^(x) -ae^(-x) +(2a +1) x-3` monotonically increases for `AA x in R` then the minimum value of 'a' is

A

2

B

1

C

0

D

`-1`

Text Solution

Verified by Experts

The correct Answer is:
C

`f'(x)=2e^(x)+ke^(-x)(2k+1)`
`=2e^(x)+(k)/(e^(x))+(2k+1)`
`=(2(e^(x))^(2)+k(2k+1)e^(x))/(e^(x))`
Now f(x) is monotonically increasing.
`rArr" "f'(x)le0" i.e., "2y^(2)+(2k+1)y+kle0`
where `y=e^(x)`
`therefore" "2y^(2)(2k+1)y+k le 0` for all positive value of y.
For the `k le0`.
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Multiple Correct Answer Type|10 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise JEE Advanced Previous Year|17 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE|Exercise Exercise (Numerical)|5 Videos

Similar Questions

Explore conceptually related problems

If f(x) and g(x)=f(x)sqrt(1-2(f(x))^2) are strictly increasing AAx in R , then find the values of f(x)dot

f(x)=[x] is step-up function. Is it a monotonically increasing function for x in R ?

Find the values of a if f(x)=2e^x-a e^(-x)+(2a+1)x-3 is increasing for all values of xdot

Let f(x) be and even function in R. If f(x) is monotonically increasing in [2, 6], then

If f(x)={(sin(2x^2)/a+cos((3x)/b))^a b//x^2,x!=0e^3, x=0 is continuous at x=0AAb in R then minimum value of a is -1//8 b. -1//4 c. -1//2 d. 0

Let f(x)=|x^2-3x-4|,-1lt=xlt=4 Then f(x) is monotonically increasing in [-1,3/2] f(x) monotonically decreasing in (3/2,4) the maximum value of f(x)i s(25)/4 the minimum value of f(x) is 0

If f(x)=k x^3-9x^2+9x+3 monotonically increasing in R , then (a) k<3 (b) klt=2 (c) kgeq3 (d) none of these

Function f(x)=|x|-|x-1| is monotonically increasing when x 1 x<1 (d) 0

For all real values of x, the minimum value of (1-x+x^(2))/(1+x+x^(2)) is

Find the possible values of a such that f(x)=e^(2x)-(a+1)e^x+2x is monotonically increasing for x in Rdot