Home
Class 12
MATHS
If f(x)={{:(-e^(-x)+k,",",xle0),(e^(x)+1...

If `f(x)={{:(-e^(-x)+k,",",xle0),(e^(x)+1,",",0ltxlt1),(ex^(2)+lambda,",",xge1):}` is one-one and monotonically increasing `AA x in R`, then

A

maximum value of k is 1

B

maximum value of k is 3

C

minimum value of `lambda` is 0

D

minimum value of `lambda` is 1

Text Solution

Verified by Experts

The correct Answer is:
B, D

If `f(x)={{:(-e^(-x)+k",",xle0),(e^(x)+1",",0ltxlt1),(ex^(2)+lambda",",xge1):}`
`y=-e^(-x)+k` is increasing for `x lt0`
`y=e^(x)+1` is increasing for `0ltxlt1`
`y=ex^(2)+lambda` is increasing for `xgt1`
`therefore" f(x) is increasing for " AA x in R`
`rArr" "f(0^(-))lef(0^(+))`
`rArr" "-1+k le 1+1`
`rArr" "kle3`
and `f(1^(-))lef(1^(+))`
`rArr" "e+1le e +lambda`
`rArr" "lambda le 1`
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Comprehension Type|6 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise JEE Advanced Previous Year|17 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE|Exercise Exercise (Numerical)|5 Videos

Similar Questions

Explore conceptually related problems

f(x)={{:(x^(2)", "xle2),(8-2x", "2ltxlt4),(4", "xge4):}

If f(x)={(sin(x^(2)-3x),xle0 .^x+5x^(2),xgt0

If f(x)={{:(x",",0lexle1),(2-e^(x-1)",",1ltxle2),(x-e",",2ltxle3):} and g'(x)=f(x), x in [1,3] , then

If f(x)={{:(x^(3)(1-x)",",xle0),(xlog_(e)x+3x",",xgt0):} then which of the following is not true?

If f(x) ={{:(x+2,xlt0),(-x^(2)-2,0le xlt1),( x, xge1):} then the number of points of discontinuity of |f(x)|is

if f(x) =2e^(x) -ae^(-x) +(2a +1) x-3 monotonically increases for AA x in R then the minimum value of 'a' is

Function f(x)=|x|-|x-1| is monotonically increasing when x 1 x<1 (d) 0

If f(x)={{:((x)/(sinx)",",x gt0),(2-x",",xle0):}andg(x)={{:(x+3",",xlt1),(x^(2)-2x-2",",1lexlt2),(x-5",",xge2):} Then the value of lim_(xrarr0) g(f(x))

Find the possible values of a such that f(x)=e^(2x)-(a+1)e^x+2x is monotonically increasing for x in Rdot

Let f(x)={{:(x+1", "xlgt0),(2-x", "xle0):}"and"g(x)={{:(x+3", "xlt1),(x^(2)-2x-2", "1lexlt2),(x-5", "xge2):} Find the LHL and RHL of g(f(x)) at x=0 and, hence, find lim_(xto0) g(f(x)).