Home
Class 12
MATHS
If x(1),x(2) in (0,(pi)/(2)), then (tan(...

If `x_(1),x_(2) in (0,(pi)/(2))`, then `(tan_(x_(2)))/(tanx_(1))` is (where `x_(1)lt x_(2)`)

A

`lt (x_(1))/(x_(2))`

B

`=(x_(1))/(x_(2))`

C

`ltx_(1) x_(2)`

D

`gt(x_(2))/(x_(1))`

Text Solution

Verified by Experts

The correct Answer is:
D

For `x_(1),x_(2) in (0,(pi)/(2))`, we know `(x)/(tanx)` is decreasing function
`therefore" for "x_(1)lt x_(2) rArr (x_(1))/(tanx_(1))gt (x_(2))/(tanx_(2))`
`rArr" "(tanx_(2))/(tanx_(1))gt (x_(2))/(x_(1))`
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Multiple Correct Answer Type|10 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise JEE Advanced Previous Year|17 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE|Exercise Exercise (Numerical)|5 Videos

Similar Questions

Explore conceptually related problems

For 0

IF 0 lt x lt (pi)/(2) then tan (pi/4 +x) + tan "(pi/4-x) is equal to

If x in (0, 1) , then find the value of tan^(-1) ((1 -x^(2))/(2x)) + cos^(-1) ((1 -x^(2))/(1 + x^(2)))

If x_1=2tan^(-1)((1+x)/(1-x)),x_2=sin^(-1)((1-x^2)/(1+x^2)) , where x in (0,1), then x_1+x_2 is equal to 0 (b) 2pi (c) pi (d) none of these

(tan ((pi)/(4) +4))/( tan ((pi)/(4) -x ))= ((1 + tan x )/( 1- tan x )) ^(2)

If (x -1) (x^(2) + 1) gt 0 , then find the value of sin((1)/(2) tan^(-1).(2x)/(1 - x^(2)) - tan^(-1) x)

int e^(x)((2 tanx)/(1+tanx)+cot^(2)(x+(pi)/(4)))dx is equal to

Solve the tan^(-1)((1-x)/(1+x))=(1)/(2)tan^(-1)x for x gt0 .