Home
Class 12
MATHS
The greatest possible value of the expre...

The greatest possible value of the expression `tanx+cotx+cosx` on the interval `[pi//6, pi//4]` is

A

`(12)/(5)sqrt2`

B

`(11)/(6)sqrt2`

C

`(12)/(5)sqrt3`

D

`(11)/(6)sqrt3`

Text Solution

Verified by Experts

The correct Answer is:
D

`f(x)=tanx+cotx+cosx`
`=(2)/(sin2x)+cosx`
Both `(2)/(sin2x) and cos x` decreasing on `[pi//6,pi//4]` and thus the greatest value occurs at `x=pi//6`
i.e. `(2)/(sinpi//3)+cospi//6=(4)/(sqrt3)+(sqrt3)/(2)=(11)/(2sqrt3)=(11sqrt3)/(6)`
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Multiple Correct Answer Type|10 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise JEE Advanced Previous Year|17 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE|Exercise Exercise (Numerical)|5 Videos

Similar Questions

Explore conceptually related problems

Prove that the least positive value of x , satisfying tanx=x+1, lies in the interval (pi/4,pi/2)

The number of solutions of the equation tanx+secx=2cosx lying in the interval [0,2pi] is 0 (b) 1 (c) 2 (d) 3

The value of c in Lagranges theorem for the function f(x)=logsinx in the interval [pi/6,(5pi)/6] is (a) pi/4 (b) pi/2 (c) (2pi)/3 (d) none of these

Solve tanx >cotx , where x in [0,2pi]dot

The maximum value of the function f(x)=sin(x+pi/6)+cos(x+pi/6) in the interval (0,pi/2) occurs at pi/(12) (b) pi/6 (c) pi/4 (d) pi/3

Find the area of the region bounded by y=cosx,y=sinx , the lines x=pi/4andx=(5pi)/4 .

The minimum value of the function f(x) =tan(x +pi/6)/tanx is:

The absolute value of the expression tan(pi/(16))+tan((5pi)/(16))+tan((9pi)/(16))+tan((13pi)/(16)) is ______

The number of distinct real roots of |[sinx,cosx,cosx],[cosx,sinx,cosx],[cosx,cosx,sinx]|=0 in the interval pi//4lt=xlt=pi//4 is 0 b. 2 c. 1 d. 3