Home
Class 12
MATHS
Let f(x)={{:((x+1)^(3),-2ltxle-1),(x^(2/...

Let `f(x)={{:((x+1)^(3),-2ltxle-1),(x^(2//3)-1,-1ltxle1),(-(x-1)^(2),1ltxlt2):}`. The total number of maxima and minima of f(x) is

A

4

B

3

C

2

D

1

Text Solution

Verified by Experts

The correct Answer is:
B

`f(x)={{:((x+1)^(3),-2ltxle-1),(x^(2//3)-1,-1ltxle1),(-(x-1)^(2),1ltxlt2):}`
Clearly f(x) is continuous.
`rArr" "f'(x)={(3(x+1)^(2),-2ltxlt-1),((2)/(3)xxx^(-1//3),-1ltxlt1-{0}),(-2(x-1),1ltxlt2):}`
Sign scheme of f'(x)

Critical point `-1,0,1`
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Multiple Correct Answer Type|10 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise JEE Advanced Previous Year|17 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE|Exercise Exercise (Numerical)|5 Videos

Similar Questions

Explore conceptually related problems

f(x)=(x)/(x+1), [1,2]

If f(x) = {(x - 5, if xle1), (4x^(2) - 9, if (1ltxlt2) , (3x +4, if xge2) :} then the right hand derivative of f(x) at x = 2 is:

Let f(x)=sqrt(1+x^(2)) then

If f (x) = {{:(x - 5 ," if ",x le1),(4x^(2)-9," if ",1 ltx lt 2),(3x + 1," if ",x ge 2):} , then the right hand derivative of f(x)at x = 2 is . . . . .

If f(x)={{:(x",",0lexle1),(2-e^(x-1)",",1ltxle2),(x-e",",2ltxle3):} and g'(x)=f(x), x in [1,3] , then

If the function f(x)={(x+1",",x le 1),(2x+1",",1lt x le 2):} and g(x)={(x^(2)",", -1 le x lt2),(x+2",",2le x le 3):} then the number of roots of the equation f(g(x))=2

"Let "f(x)=((2^(x)+2^(-x))sin x sqrt(tan^(-1)(x^(2)-x+1)))/((7x^(2)+3x+1)^(3)) . Then find the value of f'(0).

Consider two function y=f(x) and y=g(x) defined as f(x)={{:(ax^(2)+b,,0lexle1),(bx+2b,,1ltxle3),((a-1)x+2c-3,,3ltxle4):} and" "g(x)={{:(cx+d,,0lexle2),(ax+3-c,,2ltxlt3),(x^(2)+b+1,,3gexle4):} Let f be differentiable at x = 1 and g(x) be continuous at x = 3. If the roots of the quadratic equation x^(2)+(a+b+c)alphax+49(k+kalpha)=0 are real distinct for all values of alpha then possible values of k will be

Let f(x)=sin^(-1)((2x)/(1+x^(2))) and g(x)=cos^(-1)((x^(2)-1)/(x^(2)+1)) . Then tha value of f(10)-g(100) is equal to