Home
Class 12
MATHS
Let f be a continuous and differentiable...

Let f be a continuous and differentiable function in `(x_(1),x_(2))`. If `f(x).f'(x)ge x sqrt(1-(f(x))^(4))` and `lim_(xrarrx_(1))(f(x))^(2)=1 and lim_(xrarrx) )(f(x))^(2)=(1)/(2)`, then minimum value of `(x_(1)^(2)-x_(2)^(2))` is

A

`(pi)/(6)`

B

`(2pi)/(3)`

C

`(pi)/(3)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

`(2f(x).f'(x))/(sqrt(1-(f(x))^(4)))-2xge0`
`rArr" "(d)/(dx)(sin^(-1)(f(x))^(2)-x^(2))ge0`
Then `g(x)=sin^(-1)((f(x))^(2))-x^(2)` is a non-decreasing function.
`rArr" "underset(xrarrx_(1)^(+))(lim)g(x)le underset(xrarrx_(2)^(-))(lim)g(x)`
`rArr" "(pi)/(2)-x_(1)^(2)le(pi)/(6_-x_(2)^(2)`
`rArr" "x_(1)^(2)-x_(2)^(2)ge(pi)/(3)`
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Multiple Correct Answer Type|10 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise JEE Advanced Previous Year|17 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE|Exercise Exercise (Numerical)|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=sqrt(1+x^(2)) then

Let f(x) be a twice-differentiable function and f''(0)=2. Then evaluate lim_(xto0) (2f(x)-3f(2x)+f(4x))/(x^(2)).

If the function f(x) satisfies lim_(xrarr1)(f(x)-2)/(x^(2)-1)=pi , evaluate lim_(xrarr1)f(x) .

If (x^2+x−2)/(x+3) 1) f(x) then find the value of lim_(x->1) f(x)

f(x)=sqrt(x^(2)+1) then lim_(xto3)(f(x)-sqrt(10))/(x-3) is

If f(x)=2x-x^(2) then find the value of f(1)=____.

If f(1)=1 and f'(1)=2 then lim_(xto1)((f(x))^(2)-1)/(x^(2)-1) is

Let f : R to R be a differentiable funcation and f (1) = 4 . Then , the value of lim_(xto1) int_(4)^(f(x))(2t)/( x-1) dt is