Home
Class 12
MATHS
lim(nrarroo) sum(k=1)^(n)(k^(1//a{n^(a-(...

`lim_(nrarroo) sum_(k=1)^(n)(k^(1//a{n^(a-(1)/(a))+k^(a-(1)/(a))}))/(n^(a+1))` is equal to

A

1

B

2

C

43467

D

4

Text Solution

Verified by Experts

The correct Answer is:
A

`underset(nrarroo)(lim)sum_(k=1)^(n)(k^(1//a){n^(a-(1)/(a))+k^(a-(1)/(a))})/(n^(a+1))`
`" "=underset(nrarroo)(lim)sum_(k=1)^(n)(1)/(n).{((k)/(n))^(1//a)+((k)/(n))^(a)}`
`" "=int_(0)^(1)(x^(1//a)+x^(a))dx`
`" "={(x^((1//a)+1))/((1)/(a)+1)+(x^(a+1))/(a+1)}_(0)^(1)`
`" "=(a)/(a+1)+(1)/(a+1)=1`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find sum_(k=1)^(n)(1)/(k(k+1)) .

lim_(nrarroo) [(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+...+(1)/(8n)] is equal to

The value of lim_(n rarroo) sum_(r=1)^(n)(1)/(sin{((n+r)pi)/(4n)}).(pi)/(n) is equal to

The sum sum_(k=1)^(20) k (1)/(2^(k)) is equal to

Find the value of lim_(n rarr oo)sum_(k=1)^(n)(k^(2)+k-1)/((k+1)!) .

Prove that sum_(k=1)^(n)(1)/(k(k+1))=1-(1)/(n+1).

Let f(x)=lim_(nrarroo) sum_(r=0)^(n-1)(x)/((rx+1){(r+1)x+1}) . Then

lim_(nrarroo) (3.2^(n+1)-4.5^(n+1))/(5.2^(n)+7.5^(n))=